
P V - W A V E 7 . 5

SOLVEHELPING CUSTOMERS COMPLEX PROBLEMSSOLVE

I M S L S t a t i s t i c s R e f e r e n c e

Visual Numerics, Inc.

Visual Numerics, Inc. Visual Numerics, Inc. (France) S.A.R.L. Visual Numerics International, Ltd.
2500 Wilcrest Drive Tour Europe Suite 1
Suite 200 33 place des Corolles Centennial Court
Houston, Texas 77042-2579 Cedex 07 East Hampstead Road
United States of America 92049 PARIS LA DEFENSE Bracknell, Berkshire
713-784-3131 FRANCE RG 12 1 YQ
800-222-4675 +33-1-46-93-94-20 UNITED KINGDOM
(FAX) 713-781-9260 (FAX) +33-1-46-93-94-39 +01-344-458-700
http://www.vni.com e-mail: info@vni-paris.fr (FAX) +01-344-458-748
e-mail: info@boulder.vni.com e-mail: info@vniuk.co.uk

Visual Numerics, Inc. Visual Numerics International GmbH Visual Numerics Japan, Inc.
7/F, #510, Sect. 5 Zettachring 10 Gobancho Hikari Building, 4th Floor
Chung Hsiao E. Rd. D-70567 Stuttgart 14 Gobancho
Taipei, Taiwan 110 ROC GERMANY Chiyoda-Ku, Tokyo, 102
+886-2-727-2255 +49-711-13287-0 JAPAN
(FAX) +886-2-727-6798 (FAX) +49-711-13287-99 +81-3-5211-7760
e-mail: info@vni.com.tw e-mail: info@visual-numerics.de (FAX) +81-3-5211-7769

e-mail: vda-sprt@vnij.co.jp
VIsual Numerics S.A. de C.V. Visual Numerics, Inc., Korea
Cerrada de Berna 3, Tercer Piso Rm. 801, Hanshin Bldg.
Col. Juarez 136-1, Mapo-dong, Mapo-gu
Mexico, D.F. C.P. 06600 Seoul 121-050
Mexico Korea

© 1990-2001 by Visual Numerics, Inc. An unpublished work. All rights reserved. Printed in the USA.

Information contained in this documentation is subject to change without notice.

IMSL, PV- WAVE, Visual Numerics and PV-WAVE Advantage are either trademarks or registered trademarks of Visual Numerics, Inc.
in the United States and other countries.

The following are trademarks or registered trademarks of their respective owners: Microsoft, Windows, Windows 95, Windows NT, For-
tran PowerStation, Excel, Microsoft Access, FoxPro, Visual C, Visual C++ — Microsoft Corporation; Motif — The Open Systems Foun-
dation, Inc.; PostScript — Adobe Systems, Inc.; UNIX — X/Open Company, Limited; X Window System, X11 — Massachusetts
Institute of Technology; RISC System/6000 and IBM — International Business Machines Corporation; Java, Sun — Sun Microsystems,
Inc.; HPGL and PCL — Hewlett Packard Corporation; DEC, VAX, VMS, OpenVMS — Compaq Computer Corporation; Tektronix 4510
Rasterizer — Tektronix, Inc.; IRIX, TIFF — Silicon Graphics, Inc.; ORACLE — Oracle Corporation; SPARCstation — SPARC Interna-
tional, licensed exclusively to Sun Microsystems, Inc.; SYBASE — Sybase, Inc.; HyperHelp — Bristol Technology, Inc.; dBase — Bor-
land International, Inc.; MIFF — E.I. du Pont de Nemours and Company; JPEG — Independent JPEG Group; PNG — Aladdin
Enterprises; XWD — X Consortium. Other product names and companies mentioned herein may be the trademarks of their respective
owners.

IMPORTANT NOTICE: Use of this document is subject to the terms and conditions of a Visual Numerics Software License
Agreement, including, without limitation, the Limited Warranty and Limitation of Liability. If you do not accept the terms of the
license agreement, you may not use this documentation and should promptly return the product for a full refund. Do not make illegal
copies of this documentation. No part of this documentation may be stored in a retrieval system, reproduced or transmitted in any form
or by any means without the express written consent of Visual Numerics, unless expressly permitted by applicable law.

Table of Contents i

Table of Contents
Preface vii

Finding the Appropriate Routine vii

Documentation Organization vii

Typographical Conventions viii

Technical Support x

Introduction xiii

Starting PV-WAVE:IMSL Statistics xiii

Comparison of Matrices vs. Arrays xiii

Underflow and Overflow xiv

Missing Values xiv

User Errors xiv

Chapter 1: Basic Statistics 17
Contents of Chapter 17

Introduction 18

SIMPLESTAT Function 19

NORM1SAMP Function 25

NORM2SAMP Function 29

FREQTABLE Function 36

SORTDATA Function 42

RANKS Function 48

Chapter 2: Regression 55
Contents of Chapter 55

Introduction 56

ii PV-WAVE:IMSL Statistics Reference

REGRESSORS Function 70

MULTIREGRESS Function 77

MULTIPREDICT Function 93

ALLBEST Procedure 100

STEPWISE Procedure 109

POLYREGRESS Function 118

POLYPREDICT Function 125

NONLINREGRESS Function 132

HYPOTH_PARTIAL Function 141

HYPOTH_SCPH Function 147

HYPOTH_TEST Function 151

NONLINOPT Function 160

LNORMREGRESS Function 169

Chapter 3: Correlation and Covariance 189
Contents of Chapter 189

Introduction 189

COVARIANCES Function 190

PARTIAL_COV Function 194

POOLED_COV Function 199

ROBUST_COV Function 202

Chapter 4: Analysis of Variance 211
Contents of Chapter 211

Introduction 211

ANOVA1 Function 212

ANOVAFACT Function 221

MULTICOMP Function 230

Table of Contents iii

ANOVANESTED Function 231

ANOVABALANCED Function 242

Chapter 5: Categorical and Discrete
Data Analysis 259

Contents of Chapter 259

Introduction 259

CONTINGENCY Function 261

EXACT_ENUM Function 273

EXACT_NETWORK Function 275

CAT_GLM Function 280

Chapter 6: Nonparametric Statistics 295
Contents of Chapter 295

Introduction 295

SIGNTEST Function 296

WILCOXON Function 300

NCTRENDS Function 308

CSTRENDS Function 310

TIE_STATS Function 315

KW_TEST Function 317

FRIEDMANS_TEST Function 319

COCHRANQ Function 324

KTRENDS Function 326

Chapter 7: Goodness of Fit 333
Contents of Chapter 333

Introduction 334

CHISQTEST Function 334

iv PV-WAVE:IMSL Statistics Reference

NORMALITY Function 339

KOLMOGOROV1 Function 342

KOLMOGOROV2 Function 345

MVAR_NORMALITY Function 347

RANDOMNESS_TEST Function 352

Chapter 8: Time Series and Forecasting 363
Contents of Chapter 363

Introduction 364

ARMA Function 366

DIFFERENCE Function 382

BOXCOXTRANS Function 387

AUTOCORRELATION Function 391

PARTIAL_AC Function 395

LACK_OF_FIT Function 398

GARCH Function 401

KALMAN Procedure 406

Chapter 9: Multivariate Analysis 417
Contents of Chapter 417

Introduction 417

K_MEANS Function 419

PRINC_COMP Function 423

FACTOR_ANALYSIS Function 428

DISCR_ANALYSIS Procedure 437

Chapter 10: Survival Analysis 449
Contents of Chapter 449

Introduction 449

Table of Contents v

SURVIVAL_GLM Function 450

Chapter 11: Probability Distribution Functions and
Inverses 477

Contents of Chapter 477

NORMALCDF Function 478

BINORMALCDF Function 480

CHISQCDF Function 482

FCDF Function 487

TCDF Function 489

GAMMACDF Function 492

BETACDF Function 495

BINOMIALCDF Function 497

BINOMIALPDF Function 498

HYPERGEOCDF Function 500

POISSONCDF Function 502

Chapter 12: Random Number Generation 505
Contents of Chapter 505

Introduction 506

RANDOMOPT Procedure 510

RANDOM_TABLE Procedure 514

RANDOM Function 518

RANDOM_NPP Function 537

RANDOM_ORDER Function 540

RAND_TABLE_2WAY Function 542

RAND_ORTH_MAT Function 543

RANDOM_SAMPLE Function 545

vi PV-WAVE:IMSL Statistics Reference

RAND_FROM_DATA Function 547

CONT_TABLE Procedure 549

RAND_GEN_CONT Function 551

DISCR_TABLE Function 553

RAND_GEN_DISCR Function 557

RANDOM_ARMA Function 560

FAURE_INIT Function 564

FAURE_NEXT_PT Function 567

Chapter 13: Utilities 571
Contents of Chapter 571

MACHINE Function 573

STATDATA Function 578

BINOMIALCOEF Function 580

BETA Function 581

BETAI Function 583

LNBETA Function 584

GAMMA_ADV Function 585

GAMMAI Function 587

LNGAMMA Function 588

CMAST_ERR_TRANS Function 589

CMAST_ERR_STOP Function 591

CMAST_ERR_PRINT Function 591

Appendix A: References A-1

Appendix B: Summary of Routines B-1

Index 1

vii

Preface
PV-WAVE:IMSL Statistics is a powerful tool for mathematical, statistical, and
scientific computing. This PV-WAVE:IMSL Statistics Reference documents the
routines that support this functionality. Each function and procedure is designed
for use in research as well as in technical applications.

Finding the Appropriate Routine
The PV-WAVE:IMSL Statistics Reference is organized into 13 chapters. Each
chapter groups routines with similar computational or analytical capabilities. To
locate the appropriate function for a given problem, refer to the Contents of
Chapter subsection in the introduction to each chapter or the alphabetical
Summary of Routines in Appendix B.

Often the quickest way to use this PV-WAVE:IMSL Statistics Reference is to
find an example similar to your problem and mimic the example. Documented
routines contain at least one example.

Documentation Organization
Each PV-WAVE Advantage routine conforms to established conventions in pro-
gramming and documentation. The uniform design of these routines makes it
easy to use more than one function or procedure in a given application. Also,
the design consistency enables you to apply your experience with one
PV-WAVE Advantage function to all other PV-WAVE Advantage functions.

viii PV-WAVE:IMSL Statistics Reference

This manual contains a concise description of each function and procedure.
Each chapter begins with an introduction containing a Contents of Chapter that
lists the routines discussed in that chapter and the corresponding page numbers.
At least one example, including sample input and results, is provided for most
routines. The documentation for each routine contains of the following
information:

• Routine Name — procedure or function name with purpose statement

• Usage — calling sequence

• Input/Output Parameters — description of the parameters in the order of
their occurrence

Input — parameter must be initialized; it is not changed by the function

Input/Output — parameter must be initialized; the routine returns output
through the parameter; the parameter cannot be a constant or an expression

Output — no initialization is necessary; the routine returns output through
this parameter; the parameter cannot be a constant or an expression

• Returned Value — value returned by the function

• Keywords — description of keywords available for a particular routine

• Discussion — discussion of the algorithm and references to detailed
information

• Examples — one or more examples showing applications of this routine
using the required parameters

• Errors — list of errors that may occur with a particular routine for which a
user-defined action may be desired

References

References are listed alphabetically by author in Appendix A, References.

Typographical Conventions
The following typographical conventions are used in this guide:

• PV-WAVE Advantage code examples appear in a typewriter font. For
example:

PLOT, temp, s02, Title = ’Air Quality’

 ix

• Comments for commands and program examples are shown in the follow-
ing manner:

PLOT, temp, s02, Title = ’Air Quality’

; This is a comment for the PLOT command.

Comments are used often in this manual to explain code fragments and
examples.

• PV-WAVE Advantage commands are not case sensitive. However, in this
manual, variables are shown in lowercase italics (myvar), function and pro-
cedure names are shown in uppercase (XYOUTS), keywords are shown in
mixed case italic (XTitle), and system variables are shown in regular mixed
case type (!Version).

• A $ at the end of a PV-WAVE Advantage line indicates that the current
statement is continued on the following line.

This means, for instance, that strings are never split onto two lines without
the addition of the string concatenation operator (+) or a comma in some
cases. For example, the following lines would produce an error if entered
literally in PV-WAVE Advantage:

WAVE> PLOT, x, y, Title = ’Average $
Air Temperatures by Two-Hour Periods’

; Note that the string is split onto two lines. This syntax would
; produce an error.

The correct way to enter these lines is:

WAVE> PLOT, x, y, Title = ’Average ’ + $
’Air Temperatures by Two-Hour Periods’

; This is the correct way to split a string onto two command
; lines.

The string concatenation symbol (+) is used at the end of the first line, and
the split portions of the string are enclosed by delimiters. This is the con-
vention used in this reference whenever a string spans two lines. This is still
only one command, even though multiple lines are used.

• Reserved words, such as FOR, IF, and CASE, are always shown in capital
letters.

x PV-WAVE:IMSL Statistics Reference

Technical Support
If you have problems installing, unlocking, or running your software, contact
Visual Numerics Technical Support by calling:

Users outside the U.S., France, Germany, Japan, Korea, Mexico, Taiwan, and
the U.K. can contact their local agents.

Please be prepared to provide the following information when you call for con-
sultation during Visual Numerics business hours:

• Your license number, a six-digit number that can be found on the packing
slip accompanying this order. (If you are evaluating the software, just men-
tion that you are from an evaluation site.)

• The name and version number of the product. For example, PV-WAVE 7.0.

• The type of system on which the software is being run. For example,
SPARCstation, IBM RS/6000, HP 9000 Series 700.

• The operating system and version number. For example, HP-UX 10.2 or
IRIX 6.5.

• A detailed description of the problem.

Office Location Phone Number

Corporate Headquarters
Houston, Texas 713-784-3131

Boulder, Colorado 303-939-8920

France +33-1-46-93-94-20

Germany +49-711-13287-0

Japan +81-3-5211-7760

Korea +82-2-3273-2633

Mexico +52-5-514-9730

Taiwan +886-2-727-2255

United Kingdom +44-1-344-458-700

 xi

FAX and E-mail Inquiries

Contact Visual Numerics Technical Support staff by sending a FAX to:

or by sending E-mail to:

Office Location FAX Number

Corporate Headquarters 713-781-9260

Boulder, Colorado 303-245-5301

France +33-1-46-93-94-39

Germany +49-711-13287-99

Japan +81-3-5211-7769

Korea +82-2-3273-2634

Mexico +52-5-514-4873

Taiwan +886-2-727-6798

United Kingdom +44-1-344-458-748

Office Location E-mail Address

Boulder, Colorado support@boulder.vni.com

France support@vni-paris.fr

Germany support@visual-numerics.de

Japan vda-sprt@vnij.co.jp

Korea support@vni.co.kr

Taiwan support@vni.com.tw

United Kingdom support@vniuk.co.uk

xii PV-WAVE:IMSL Statistics Reference

Electronic Services

Service Address

General e-mail info@boulder.vni.com

Support e-mail support@boulder.vni.com

World Wide Web http://www.vni.com

Anonymous FTP ftp.boulder.vni.com

FTP Using URL ftp://ftp.boulder.vni.com/VNI/

PV-WAVE
Mailing List: Majordomo@boulder.vni.com

To subscribe
 include:

subscribe pv-wave YourEmailAddress

To post messages pv-wave@boulder.vni.com

xiii

Introduction

Starting PV-WAVE:IMSL Statistics
To start PV-WAVE:IMSL Statistics, you must first be running PV-WAVE. For
detailed information on starting PV-WAVE, see the PV-WAVE User’s Guide or
the installation instructions.

At the WAVE> prompt, type:

@stat_startup

You will then see this message:

PV-WAVE:IMSL Statistics is initialized.

You are now ready to use PV-WAVE:IMSL Statistics.

Comparison of Matrices vs. Arrays
In this book, we use the following convention for 2D arrays: “row” refers to the
first index of the array and “column” refers to the second. So for a 2D array A,
A(i,j) is the element in row i and column j. The PM command makes this easy
to visualize:

a = INTARR(4, 8) & a(2,5) = 1 & PM, a

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

xiv Introduction PV-WAVE:IMSL Statistics Reference

0 0 0 0 0 0 0 0

Underflow and Overflow
In most cases, PV-WAVE:IMSL Statistics routines are written so that computa-
tions are not affected by underflow, provided the system (hardware or software)
replaces an underflow with the value zero. Normally, system error messages
indicating underflow can be ignored.

PV-WAVE:IMSL Statistics routines also are written to avoid overflow. A pro-
gram that produces system error messages indicating overflow should be
examined for programming errors such as incorrect input data, mismatch of
parameter types, or improper dimensions.

In many cases, the documentation for a function points out common pitfalls that
can lead to failure of the algorithm.

Missing Values
Some of the routines in this manual allow the data to contain missing values.
These routines recognize as a missing value the special value referred to as
“Not a Number” or NaN. The actual value varies on different computers, but it
can be obtained by reference to function MACHINE.

The manner in which missing values are treated depends on the individual func-
tion as described in the documentation for that function.

User Errors
PV-WAVE:IMSL Statistics functions attempt to detect user errors and handle
them in a way that provides as much information to the user as possible. To do
this, five levels of Informational Error severity, in addition to the basic
PV-WAVE:IMSL Statistics error-handling facility, are recognized. Following a
call to a PV-WAVE:IMSL Statistics mathematical or statistical function, the
system variables !Error and !Cmast_Err contain information concerning the cur-
rent error state. The system variable !Error contains the error number of the last
error. System variable !Cmast_Err is set to either zero, which indicates that an
Informational Error did not occur, or to the error code of the last Informational
Error that did occur.

User Errors xv

Errors and Default Actions

When your application returns from a PV-WAVE:IMSL Statistics function, the
system variable !Cmast_Err is set either to zero, which indicates that an infor-
mational error did not occur, or to the error code for the last Informational
Error that did occur. Internally, there are five levels of Informational Error
severity: note, alert, warning, fatal, and terminal. Although PV-WAVE:IMSL
Statistics does not allow users to directly manipulate how these errors are inter-
preted internally, some control over the output of error messages is allowed. All
informational error messages are printed by default. Setting the system variable
!Quiet to a nonzero value suppresses output of notes, alerts, and warnings.

The system variable !Error remains active during all PV-WAVE:IMSL Statis-
tics error states. But when an Informational Error occurs within a mathematical
function, the system variable !Cmast_Err is used.

What Determines Error Severity

Although your input(s) may be mathematically correct, limitations of the com-
puter’s arithmetic and the algorithm itself can make it impossible to accurately
compute an answer. In this case, the assessed degree of accuracy determines the
severity of the error. In instances where the function computes several output
quantities and some are not computable, an error condition exists. Its severity
depends on an assessment of the overall impact of the error.

Functions for Error Handling

With respect to Informational Errors, you can interact with the
PV-WAVE:IMSL Statistics error-handling system in two ways:
(1) change the default printing actions and (2) determine the code of an Infor-
mational Error in order to take corrective action. To change the default printing
action, set the system variable !Quiet to a nonzero value. Use
CMAST_ERR_TRANS to retrieve the integer code for an informational error.

xvi Introduction PV-WAVE:IMSL Statistics Reference

Use of CMAST_ERR_TRANS to Determine Program Action

In the program segment below, the Cholesky factorization of a matrix is to be
performed. If it is determined that the matrix is not nonnegative definite (and
often this is not immediately obvious), the program takes a different branch:

x = CHNNDFAC, a, fac

; Call CHNNDFAC with a matrix that may not be nonnegative definite.

IF (CMAST_ERROR_TRANS($
’MATH_NOT_NONNNEG_DEFINITE’) eq !Cmast_Err)) THEN ...

; Check the system variable !Cmast_Err to see if it contains the
; error code for the error NOT_NONNNEG_DEFINITE.

17

CHAPTER

1

Basic Statistics

Contents of Chapter

Simple Summary Statistics

Univariate summary
statistics SIMPLESTAT Function

Mean and variance inference
for a single normal
population NORM1SAMP Function

Inferences for two normal
populations NORM2SAMP Function

Tabulate, Sort, and Rank

Tallies observations into a
one-way frequency tableFREQTABLE Function

Sorts data with options to tally
cases into a multiway
frequency table SORTDATA Function

Ranks, normal scores,
or exponential scores RANKS Function

18 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

Introduction
The functions for computations of basic statistics generally have relatively sim-
ple input parameters. The data are input in either a one- or two-dimensional
array. As usual, when a two-dimensional array is used, the rows contain obser-
vations and the columns represent variables. Most of the functions in this
chapter allow for missing values. Missing value codes can be set by using func-
tion MACHINE.

Several functions in this chapter perform statistical tests. These functions gener-
ally return a “p-value” for the test, often as the return value for the C function.
The p-value is between 0 and 1 and is the probability of observing data that
would yield a test statistic as extreme or more extreme under the assumption of
the null hypothesis. Hence, a small p-value is evidence for the rejection of the
null hypothesis.

SIMPLESTAT Function 19

SIMPLESTAT Function
Computes basic univariate statistics.

Usage

result = SIMPLESTAT(x)

Input Parameters

x — Data matrix. The data value for the i-th observation of the j-th variable
should be in the matrix element (i, j).

Returned Value

result — A two-dimensional matrix containing some simple statistics for each
variable x. If Median and Median_And_Scale are not used as keywords, then
element (i, j) of the returned matrix contains the i-th statistic of the j-th variable.

i Statistic Returned in Element (i, *)

0 mean

1 variance

2 standard deviation

3 coefficient of skewness

4 coefficient of excess (kurtosis)

5 minimum value

6 maximum value

7 range

8 coefficient of variation (when defined)
If the coefficient of variation is not defined, zero is
returned.

9 number of observations (the counts)

10 lower confidence limit for the mean (assuming
normality)
The default is a 95-percent confidence interval.

20 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

Input Keywords

Double — If present and nonzero, double precision is used.

Conf_Means — Scalar specifying the confidence level for a two-sided interval
estimate of the means (assuming normality) in percent. The Conf_Means key-
word must be between 0.0 and 100.0 and is often 90.0, 95.0, or 99.0. For a one-
sided confidence interval with confidence level c, set
Conf_Means = 100.0 – 2.0(100.0 – c) (at least 50 percent).

Default: 95-percent confidence interval is computed

Conf_Variances — Confidence level for a two-sided interval estimate of the
variances (assuming normality) in percent. The confidence intervals are sym-
metric in probability (rather than in length). For a one-sided confidence interval
with confidence level c, set Conf_Means = 100.0 – 2.0(100.0 – c) (at least 50
percent).

Default: 95-percent confidence interval is computed.

Median_Only — If present and nonzero, medians are computed and stored in
elements (14, *) of the returned matrix of simple statistics. The Median_Only
and Median_And_Scale keywords cannot be used together.

Median_And_Scale — If present and nonzero, specified, the medians, the
medians of the absolute deviations from the medians, and a simple robust esti-
mate of scale are computed and stored in elements (14, *), (15, *), and (16, *)
of the returned matrix of simple statistics. The Median_Only and
Median_And_Scale keywords cannot be used together.

Elementwise — If present and nonzero, all nonmissing data for any variable is
used in computing the statistics for that variable.

Default action: if an observation (row of x) contains a missing value,
the observation is excluded from computations for all variables. In

11 upper confidence limit for the mean (assuming
normality)

12 lower confidence limit for the variance (assuming
normality)
The default is a 95-percent confidence interval.

13 upper confidence limit for the variance (assuming
normality)

i Statistic Returned in Element (i, *)

SIMPLESTAT Function 21

either case, if weights and/or frequencies are specified and the value of
the weight and/or frequency is missing, the observation is excluded
from computations for all variables.

Frequencies — One-dimensional array containing the frequency for each
observation.

Default: each observation has a frequency of 1

Weights — One-dimensional array containing the weight for each observation.

Default: each observation has a weight of 1

Discussion

Function SIMPLESTAT computes the sample mean, variance, minimum, maxi-
mum, and other basic statistics for the data in x. It also computes confidence
intervals for the mean and variance (under the hypothesis that the sample is
from a normal population).

Frequencies, fi’s, are interpreted as multiple occurrences of the other values in
the observations. In other words, a row of x with a frequency variable having a
value of 2 has the same effect as two rows with frequencies of 1. The total of
the frequencies is used in computing all the statistics based on moments (mean,
variance, skewness, and kurtosis). Weights, wi’s, are not viewed as replication
factors. The sum of the weights is used only in computing the mean (the
weighted mean is used in computing the central moments). Both weights and
frequencies can be zero, but neither can be negative. In general, a zero fre-
quency means that the row is to be eliminated from the analysis; no further
processing or error checking is done on the row. A weight of zero results in the
row being counted, and updates are made of the statistics.

The definitions of some of the statistics are given below in terms of a single
variable x of which the i-th datum is xi.

22 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

Mean

Variance

Skewness

Excess or Kurtosis

Minimum

xmin = min(xi)

Maximum

xmax = max(xi)

Range

xmax – xmin

Coefficient of Variation

xw

fiwixi∑
fiwi∑

--------------------=

sw
2

fiwi xi xw–()2∑
n 1–

--------------------------------------=

fiwi xi xw–()3 n⁄∑
fiwi xi xw–()2

n⁄∑
3 2⁄--

fiwi xi xw–()4 n⁄∑
fiwi xi xw–()2

n⁄∑
2

-- 3–

sw

xw

----- for x 0≠

SIMPLESTAT Function 23

Median

Median Absolute Deviation

Simple Robust Estimate of Scale

where

is the inverse of the standard normal distribution function evaluated at 3/4. This
standardizes MAD in order to make the scale estimate consistent at the normal
distribution for estimating the standard deviation (Huber 1981, pp. 107–108).

Example

This example uses data from Draper and Smith (1981). There are five variables
and 13 observations.

x = STATDATA(5)

stats = SIMPLESTAT(x)

; Call SIMPLESTAT.

labels = ["means", "variances", "std. dev", $

"skewness", "kurtosis", "minima", $

"maxima", "ranges", "C.V.", "counts", $

"lower mean", "upper mean", $

"lower var", "upper var"]

; Define the character strings that will be used as labels for the
; rows of the output.

FOR i = 0, 13 DO PM, labels(i), stats(i, *), $

Format = ’(a10, 5f9.3)’

; Output the results.

means 7.462 48.154 11.769 30.000 95.423

variances 34.603 242.141 41.026 280.167 226.314

median xi{ } middle xi after sorting if n is odd

average of middle two xi’s if n is even

=

MAD median xi median xj{ }–{ }=

MAD Φ 1– 3 4⁄()⁄

Φ 1– 3 4⁄() 0.6745≈

24 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

std. dev 5.882 15.561 6.405 16.738 15.044

skewness 0.688 -0.047 0.611 0.330 -0.195

kurtosis 0.075 -1.323 -1.079 -1.014 -1.342

minima 1.000 26.000 4.000 6.000 72.500

maxima 21.000 71.000 23.000 60.000 115.900

ranges 20.000 45.000 19.000 54.000 43.400

C.V. 0.788 0.323 0.544 0.558 0.158

counts 13.000 13.000 13.000 13.000 13.000

lower mean 3.907 38.750 7.899 19.885 86.332

upper mean 11.016 57.557 15.640 40.115 104.514

lower var 17.793 124.512 21.096 144.065 116.373

upper var 94.289 659.817 111.792 763.434 616.688

NORM1SAMP Function 25

NORM1SAMP Function
Computes statistics for mean and variance inferences using a sample from a
normal population.

Usage

result = NORM1SAMP(x)

Input Parameters

x — One-dimensional array containing the observed values.

Returned Value

result — The mean of the sample.

Input Keywords

Double — If present and nonzero, double precision is used

Conf_Mean — Confidence level (in percent) for two-sided interval estimate of
the mean. Keyword Conf_Mean must be between 0.0 and 100.0 and is often
90.0, 95.0, or 99.0. For a one-sided confidence interval with confidence level c
(at least 50 percent), set Conf_Mean = 100.0 – 2.0 x (100.0 – c).

Default: 95-percent confidence interval is computed

T_Null_Hyp — Null hypothesis value for t test for the mean.

Default: T_Null_Hyp = 0.0

Chi_Sq_Null_Hyp — Null hypothesis value for the chi-squared test for the
variance.

Default: Chi_Sq_Null_Hyp = 1.0

Conf_Var — Confidence level (in percent) for two-sided interval estimate of
the variances. Keyword Conf_Var must be between 0.0 and 100.0 and is often
90.0, 95.0, or 99.0. For a one-sided confidence interval with confidence level c
(at least 50 percent), set Conf_Var = 100.0 – 2.0 x (100.0 – c).

Default: 95-percent confidence interval is computed.

26 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

Output Keywords

T_Test — Named variable into which the three-element array containing statis-
tics associated with the t test is stored. The first element contains the degrees of
freedom associated with the t test for the mean, the second element contains the
test statistic, and the third element contains the probability of a larger
t in absolute value. The t test is a test of the hypothesis µ = µ0, where µ0 is the
null hypothesis value as described in T_Null_Hyp.

Ci_Mean — Named variable into which the two-element array containing the
lower confidence limit for the mean, and the upper confidence limit for the
mean is stored.

Ci_Var — Named variable into which the two-element array containing lower
and upper confidence limits for the variance is stored.

Chi_Sq_Test — Named variable into which the three-element array containing
statistics associated with the chi-squared test is stored. The first element con-
tains the degrees of freedom associated with the chi-squared test for variances,
the second element contains the test statistic, and the third element contains the
probability of a larger chi-squared value. The chi-squared test is a test of the
hypothesis σ2 = σ2

0, where σ2
0 is the null hypothesis value as described in

Chi_Sq_Null_Hyp.

Stdev — Named variable into which the standard deviation of the sample is
stored.

Discussion

Statistics for mean and variance inferences using a sample from a normal popu-
lation are computed, including confidence intervals and tests for both mean and
variance. The definitions of mean and variance are given below. The summation
in each case is over the set of valid observations, based on the presence of miss-
ing values in the data.

Mean, return value

x
xi∑

n
-----------=

NORM1SAMP Function 27

Standard deviation

The t statistic for the two-sided test concerning the population mean is given by

where s and

are given above. This quantity has a T distribution with n – 1 degrees of
freedom.

The chi-squared statistic for the two-sided test concerning the population vari-
ance is given by

where s is given above. This quantity has a χ2 distribution with n – 1 degrees of
freedom.

Example 1

This example uses data from Devore (1982, p. 335), which is based on data
published in the Journal of Materials. There are 15 observations; the mean is
the only output.

x = [26.7, 25.8, 24.0, 24.9, 26.4, $

25.9, 24.4, 21.7, 24.1, 25.9, $

27.3, 26.9, 27.3, 24.8, 23.6]

PRINT, "Sample Mean = ", NORM1SAMP(x)

Sample Mean = 25.3133

Example 2

This example uses the same data as the initial example. The hypothesis H0: µ =
20.0 is tested. The extremely large t value and the correspondingly small p-

s
xi x–()2

∑
n 1–

---------------------------=

t
x µ0–

s n⁄
--------------=

x

χ2 n 1–()s2

σ0
2

---------------------=

28 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

value provide strong evidence to reject the null hypothesis. First, a procedure to
print the results is defined.

PRO print_results, mean, stdev, $

ci_mean, t_test

PM, mean, Title = "Sample Mean:"

PM, stdev, Title = $
"Sample Standard Deviation:"

PM, "(", ci_mean(0), ci_mean(1), ")", $
Title = "95% CI for the mean:"

PM, ’ ’

PM, " df = ", $
t_test(0), Title = ’t-test statistics:’

PM, " t = ", t_test(1)

PM, " p-value = ", t_test(2)

END

x = [26.7, 25.8, 24.0, 24.9, 26.4, 25.9, 24.4,$
21.7, 24.1, 25.9, 27.3, 26.9, 27.3, 24.8,$
23.6]

mean = NORM1SAMP(x, Stdev = stdev, $

Ci_Mean = ci_mean, $

T_Null_Hyp = 40.0, $

T_Test = t_test)

print_results, mean, stdev, ci_mean, t_test

Sample Mean:

 25.3133

Sample Standard Deviation:

 1.57882

95% CI for the mean:

(24.4390 26.1877)

t-test statistics:

 df = 14.0000

 t = -36.0277

 p-value = 2.00000

NORM2SAMP Function 29

NORM2SAMP Function
Computes statistics for mean and variance inferences using samples from two
independently normal populations.

Usage

result = NORM2SAMP(x1, x2)

Input Parameters

x1 — One-dimensional array containing the first sample.

x2 — One-dimensional array containing the second sample.

Returned Value

result — Difference in means of the mean of the second sample from the first
sample.

Input Keywords

Double — If present and nonzero, double precision is used.

Conf_Mean — Confidence level for two-sided interval estimate of the mean of
x1 minus the mean of x2, in percent. Keyword Conf_Mean must be between 0.0
and 100.0 and is often 90.0, 95.0, or 99.0. For a one-sided confidence interval
with confidence level c (at least 50 percent), set

Conf_Mean = 100.0 – 2.0 x (100.0 – c).

Default: Conf_Mean = 95.0

T_Test_Null_Hyp — Null hypothesis value for the t test.

Default: T_Test_Null_Hyp = 0.0

Conf_Var — Confidence level for inference on variances. Under the assumption
of equal variances, the pooled variance is used to obtain a two-sided Conf_Var
percent confidence interval for the common variance if Ci_Comm_Var is speci-
fied. Without making the assumption of equal variances, the ratio of the
variances is of interest. A two-sided Conf_Var percent confidence interval for
the ratio of the variance of the first sample to that of the second sample is com-

30 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

puted and is returned if Ci_Ratio_Var is specified. The confidence intervals are
symmetric in probability.

Default: Conf_Var = 95.0

Chi_Sq_Null_Hyp — Null hypothesis value for the chi-squared test.

Default: Chi_Sq_Null_Hyp = 1.0

Output Keywords

Mean_X1 — Means of the first sample.

Mean_X2 — Means of the second sample.

Ci_Diff_Eq_Var — Named variable into which the two-element array contain-
ing the lower confidence limit and the upper limit for the mean of the first
population minus the mean of the second, assuming equal variances is stored.

Ci_Diff_Ne_Var — Named variable into which the two-element array contain-
ing the lower confidence limit and the upper limit for the mean of the first
population minus the mean of the second, assuming unequal variances, is
stored.

T_Test_Eq_Var — Named variable into which the three-element array contain-
ing statistics associated with a t test for µ1 – µ2 = d, where d is the null
hypothesis value, is stored. (See the description of T_Test_Null_Hyp.) The first
element contains the degrees of freedom, second element contains the t value,
and the third element contains the probability of a larger t in absolute value,
assuming the null hypothesis is true. This test assumes equal variances.

T_Test_Ne_Var — Named variable into which the three-element array contain-
ing statistics associated with a t test for µ1 – µ2 = d, where d is the null
hypothesis value, is stored. (See the description of T_Test_Null_Hyp.) The first
element contains the degrees of freedom for Satterthwaite’s approximation, the
second element contains the t value, and the third element contains the probabil-
ity of a larger t in absolute value, assuming the null hypothesis is true. This test
does not assume equal variances.

Pooled_Var — Named variable into which the pooled variance for the two sam-
ples is stored.

Ci_Comm_Var — Named variable into which the two-element array containing
the lower confidence limit and the upper confidence limit for the common (or
pooled) variance is stored.

NORM2SAMP Function 31

Chi_Sq_Test — Named variable into which the three-element array containing
statistics associated with the chi-squared test for σ2 = σ2

0, where σ2 is the com-
mon (or pooled) variance and σ2

0 is the null hypothesis value, is stored. (See
description of Chi_Sq_Null_Hyp.) The first element contains the degrees of
freedom, the second element contains the chi-squared value, and the third ele-
ment contains the probability of a larger chi-squared value, p-value. This test
assumes equal variances.

Stdev_X1 — Named variable into which the standard deviation of the first sam-
ple is stored.

Stdev_X2 — Named variable into which the standard deviation of the second
sample is stored.

Ci_Ratio_Var — Named variable into which the two-element array containing
the approximate lower confidence limit and the approximate upper confidence
limit for the ratio of the variance of the first population to the second is stored.

F_Test — Named variable into which the four-element array containing statis-
tics associated with the F test for equality of variances is stored. The first
element contains the degrees of freedom for the numerator, the second element
contains the degrees of freedom for the denominator, the third element contains
the F test value, and the fourth element contains the probability of a larger F
value, p-value, assuming the null hypothesis (H0: σ2

1 = σ2
2) is true.

Discussion

Function NORM2SAMP computes statistics for making inferences about the
means and variances of two normal populations, using independent samples in
x1 and x2. For inferences concerning parameters of a single normal population,
see function NORM1SAMP on page 25.

Let µ1 and σ2
1 be the mean and variance of the first population, and let µ2 and

σ2
2 be the corresponding quantities of the second population. The function con-

tains test statistics and confidence intervals for difference in means, equality of
variances, and the pooled variance.

The means and variances for the two samples are as follows:

x1 x1 i n1⁄∑
 ,= x2 x2 i∑

 n2⁄=

32 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

and

Inferences about the Means

The test that the difference in means equals a certain value, for example, µ0,
depends on whether or not the variances of the two populations can be consid-
ered equal. If the variances are equal and T_Test_Null_Hyp equals zero, the test
is the two-sample t test, which is equivalent to an analysis-of-variance test. The
pooled variance for the difference-in-means test is as follows:

The t statistic is as follows:

Also, the confidence interval for the difference in means can be obtained by
specifying Ci_Diff_Eq_Var.

If the population variances are not equal, the ordinary t statistic does not have a
t distribution and several approximate tests for the equality of means have been
proposed. (See, for example, Anderson and Bancroft 1952, and
Kendall and Stuart 1979.) One of the earliest tests devised for this situation is
the Fisher-Behrens test, based on Fisher’s concept of fiducial probability. A pro-
cedure used if T_Test_Ne_Var and/or Ci_Diff_Ne_Var are specified is the
Satterthwaite’s procedure, as suggested by H.F. Smith and modified by F.E. Sat-
terthwaite (Anderson and Bancroft 1952, p. 83).

The test statistic is

,

where .

s1
2

x1 i x1–()2

n1 1–()
----------------------- s2

2
x2i x2–()2

n2 1–()
-----------------------∑=,∑=

s
2 n1 1–()s1 n2 1–()s2+

n1 n2 2–+
--=

t
x1 x2– d–

s 1 n1⁄() 1 n2⁄()+
---=

t ′ x1 x2– d–() sd⁄=

sd s1
2 n1⁄() s2

2 n2⁄()+=

NORM2SAMP Function 33

Under the null hypothesis of µ1 – µ2 = d, this quantity has an approximate t dis-
tribution with degrees of freedom given by the following equation:

Inferences about the Variances

The F statistic for testing the equality of variances is given by

F = s2
max / s2

min,

where s2
max is the maximum of s2

1 and s2
2. If the variances are equal, this quan-

tity has an F distribution with n1 – 1 and n2 – 1 degrees of freedom, where n1 is
the sample size corresponding to s2

max.

Generally, it is not recommended that the results of the F test be used to decide
whether to use the regular t test or the modified t′ on a single set of data. The
modified t′ (Satterthwaite’s procedure) is the more conservative approach to use
if there is doubt about the equality of the variances.

Example 1

This example, taken from Conover and Iman (1983, p. 294), involves scores on
arithmetic tests of two grade-school classes. The question is whether a group
taught by an experimental method has a higher mean score. Only the difference
in means is output. The data are shown below.

Scores for
Standard Group

Scores for
Experimental Group

72 111

75 118

77 128

80 138

104 140

110 150

125 163

 164

 169

d f
sd

4

s1
2 n1⁄()2

n1 1–

s2
2 n2⁄()2

n2 1–
--------------------+

--=

34 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

x1 = [72, 75, 77, 80, 104, 110, 125]

x2 = [111, 118, 128, 138, 140, 150, 163, $
164, 169]

PRINT, "difference of means = ", NORM2SAMP(x1, x2)

difference of means = -50.4762

Example 2

The same data is used for this example as for the initial example. Here, the
results of the t test are output. The variances of the two populations are
assumed to be equal. It is seen from the output that there is strong reason to
believe that the two means are different (t value of –4.804). Since the lower
97.5-percent confidence limit does not include zero, the null hypothesis is that
µ1 ≤ µ2 would be rejected at the 0.05 significance level. (The closeness of the
values of the sample variances provides some qualitative substantiation of the
assumption of equal variances.) First, define a procedure to print the results.

PRO print_results, diff, sp, ci, t

 PM, diff, Title = "Difference of Means: "

 PM, sp, Title = "Pooled Variance: "

 PM, "CI for Difference of Means is (", ci(0), ",", ci(1), ")"

 PM, ’ ’

 PM, "t-test for Equal Variances:"

 PM, t(0), Title = "Degrees of Freedom:"

 PM, t(1), Title = "t statistic: "

 PM, t(2), Title = "P-Value:"

END

x1 = [72, 75, 77, 80, 104, 110, 125]

x2 = [111, 118, 128, 138, 140, 150, 163, $

164, 169]

diff = NORM2SAMP(x1, x2, Pooled_Var = sp, $

Ci_Diff_Eq_Var = ci, T_Test_Eq_Var = t)

print_results, diff, sp, ci, t

Difference of Means:

 -50.4762

Pooled Variance:

 434.633

CI for Difference of Means is

(-73.0100, -27.9424)

NORM2SAMP Function 35

t-test for Equal Variances:

Degrees of Freedom:

 14.0000

t statistic:

 -4.80436

P-Value:

 0.000280258

36 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

FREQTABLE Function
Tallies observations into a one-way or two-way frequency table.

Usage

result = FREQTABLE(x, nxbins [, y, nybins])

Input Parameters

x — One-dimensional array containing the observations for the first variable.

nxbins — Number of intervals (bins) for x.

y — (Optional) One-dimensional array containing the observations for the sec-
ond variable.

nybins — (Optional) Number of intervals (bins) for y.

Returned Value

result — One-dimensional or two-dimensional array containing the counts.

Input Keywords

Double — If present and nonzero, double precision is used.

IF Two Positional Arguments Are Used:

Lower_Bound — Used with Upper_Bound to specify two semi-infinite inter-
vals that are used as the initial and last interval. The initial interval is closed on
the right and includes Lower_Bound as its right endpoint. The last interval is
open on the left and includes all values greater than Upper_Bound. The remain-
ing nxbins − 2 intervals are of length

(Upper_Bound – Lower_Bound) / (nxbins – 2)

and are open on the left and closed on the right. The keyword Upper_Bound
also must be specified with this keyword. Parameter nxbins must be greater than
or equal to 3 for this option.

Upper_Bound — Used along with Lower_Bound to specify two semi-infinite
intervals that are used as the initial and last interval. The initial interval is
closed on the right and includes Lower_Bound as its right endpoint. The last

FREQTABLE Function 37

interval is open on the left and includes all values greater than Upper_Bound.
The remaining nxbins − 2 intervals are of length (Upper_Bound –
Lower_Bound) /(nxbins – 2)and are open on the left and closed on the right.
The keyword Lower_Bound must also be specified with this keyword. Parame-
ter nxbins must be greater than or equal to 3 for this option.

Cutpoints — Specifies a one-dimensional array of length nxbins containing the
cutpoints to use. This option allows unequal intervals. The initial interval is
closed on the right and contains the initial cutpoint as its right endpoint. The
last interval is open on the left and includes all values greater than the last cut-
point. The remaining nxbins − 2 intervals are open on the left and closed on the
right. Parameter nxbins must be greater than 3 for this option. If Cutpoints is
used, then no other keywords should be specified.

Class_Marks — Specifies a one-dimensional array containing equally spaced
class marks in ascending order. The class marks are the midpoints of each of
the nxbins, and each interval is taken to have length (Class_Marks(1) –
Class_Marks(0)). Parameter nxbins must be greater than or equal to 2 for this
option. If Class_Marks is used, then no other keywords should be specified.

If Four Positional Arguments Are Used:

Lower_Bound — Used with Upper_Bound to specify intervals of equal lengths.
See the Discussion section for details.

Upper_Bound — Used with Lower_Bound to specify intervals of equal lengths.
See the Discussion section for details.

Cutpoints — Specifies a one-dimensional array of cutpoints (boundaries). The
keyword Cutpoints must be a one-dimensional array of length
(nxbins–1) + (nybins–1) containing the cutpoints for x in the first (nxbins–1)
elements followed by the cutpoints for y in the final (nybins–1) elements.

Class_Marks — Specifies a one-dimensional array containing equally spaced
class marks in ascending order. The class marks are the midpoints of each inter-
val. The keyword Class_marks must be a one-dimensional array of length
(nxbins + nybins) containing the class marks for x in the first nxbins elements
followed by the class marks for y in the final nybins elements.

38 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

Discussion

If Two Positional Arguments Are Used:

The default action of FREQTABLE is to group data into nxbins categories of
size (max (x) – min (x)) / nxbins. The initial interval is closed on the left and
open on the right. The remaining intervals are open on the left and closed on
the right. Using keywords, the types of intervals used may be changed.

If Upper_Bound and Lower_Bound are specified, two semi-infinite intervals are
used as the initial and last interval. The initial interval is closed on the right and
includes Lower_Bound as its right endpoint. The last interval is open on the left
and includes all values greater than Upper_Bound. The remaining nxbins − 2
intervals are of length (Upper_Bound – Lower_Bound) / (nxbins – 2) and are
open on the left and closed on the right. Parameter nxbins must be greater than
or equal to 3 for this option.

If keyword Class_Marks is used, equally spaced class marks in ascending order
must be provided in an array of length nxbins. The class marks are the mid-
points of each of the nxbins, and each interval is taken to have the following
length:

(Class_Marks(1) – Class_Marks(0))

Parameter nxbins must be greater than or equal to 2 for this option.

If keyword Cutpoints is used, cutpoints (bounders) must be provided in an array
of length nxbins. This option allows unequal intervals. The initial interval is
closed on the right and contains the initial cutpoint as its right endpoint. The
last interval is open on the left and includes all values greater than the last cut-
point. The remaining nxbins − 2 intervals are open on the left and closed on the
right. Parameter nxbins must be greater than 3 for this option.

If Four Positional Arguments Are Used:

By default, nxbins intervals of equal length are used. Let xmin and xmax be the
minimum and maximum values in x, respectively, with similar meanings for
ymin and ymax. Then, table(0, 0) is the tally of observations with the x value
less than or equal to xmin + (xmax–xmin)/nxbins, and the y value less than or
equal to ymin + (ymax–ymin)/ny.

If Upper_Bound and Lower_Bound are specified, intervals of equal lengths are
used just as in the default case, except the upper and lower bounds are taken as
the user supplied keywords xmin = Lower_bound(0), xmax = Upper_bound(0),
ymin = Lower_bound(1), and ymax = Upper_bound(1), instead of the actual

FREQTABLE Function 39

minima and maxima in the data. Therefore, the first and last intervals for both
variables are semi-infinite in length.

If Cutpoints is specified, cutpoints (boundaries) must be provided. The key-
word Cutpoints must be a one-dimensional array of length (nxbins–1) +
(nybins–1) containing the cutpoints for x in the first (nxbins–1) elements fol-
lowed by the cutpoints for y in the final (nybins–1) elements.

If Class_marks is specified, equally spaced class marks in ascending order must
be provided. The class marks are the midpoints of each interval. The keyword
Class_marks must be a one-dimensional array of length (nxbins + nybins) con-
taining the class marks for x in the first nxbins elements followed by the class
marks for y in the final nybins elements.

Example 1: One-way Frequency Table

The data for this example is from Hinkley (1977) and Velleman and Hoaglin
(1981). Data includes measurements (in inches) of precipitation in Minneapolis/
St. Paul during the month of March for 30 consecutive years.

x = [0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,$

1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,$

0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,$

1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89,$

0.90, 2.05]

; Define the data set.

table = FREQTABLE(x, 10)

; Call FREQTABLE with nxbins = 10.

PRINT, ’ Bin Number Count’ &$

PRINT, ’ ---------- -----’ &$

FOR i = 0, 9 DO PRINT, i + 1, table(i)

Bin Number Count

---------- -----

 1 4.00000

 2 8.00000

 3 5.00000

 4 5.00000

 5 3.00000

 6 1.00000

 7 3.00000

 8 0.00000

 9 0.00000

40 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

 10 1.00000

Example 2: Two-way Frequency Table

The data for x in this example is the same as in the example above. The data
for y were created by adding small integers to x.

nxbins = 5

nybins = 6

; Define the data set.

x = [0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, $

 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, $

 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, $

 1.89, 0.90, 2.05]

y = [1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, $

 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, $

 1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, $

 2.89, 2.90, 5.05]

; Default usage of FREQTABLE

table = FREQTABLE(x, nxbins, y, nybins)

PM, table, Format = "(6(F8.5, 2X))", $

 Title = ’ counts’

 counts

 4.00000 2.00000 4.00000 2.00000 0.00000 0.00000

 0.00000 4.00000 3.00000 2.00000 1.00000 0.00000

 0.00000 0.00000 1.00000 2.00000 0.00000 1.00000

 0.00000 0.00000 0.00000 0.00000 1.00000 2.00000

 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000

lb = [1, 2]

up = [4, 6]

; Using user-defined bounds

table = FREQTABLE(x, nxbins, y, nybins, Upper_Bound = up, $

 Lower_Bound = lb)

PM, table, Format = "(6(F8.5, 2X))", $

 Title = ’ counts’

FREQTABLE Function 41

 counts

 3.00000 2.00000 4.00000 0.00000 0.00000 0.00000

 0.00000 5.00000 5.00000 2.00000 0.00000 0.00000

 0.00000 0.00000 1.00000 3.00000 2.00000 0.00000

 0.00000 0.00000 0.00000 0.00000 0.00000 2.00000

 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

cm = [0.5, 1.5, 2.5, 3.5, 4.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5]

; Using class-marks

table = FREQTABLE(x, nxbins, y, nybins, Class_Marks = cm)

PM, table, Format = "(6(F8.5, 2X))", $

 Title = ’ counts’

 counts

 3.00000 2.00000 4.00000 0.00000 0.00000 0.00000

 0.00000 5.00000 5.00000 2.00000 0.00000 0.00000

 0.00000 0.00000 1.00000 3.00000 2.00000 0.00000

 0.00000 0.00000 0.00000 0.00000 0.00000 2.00000

 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

cp = [1, 2, 3, 4, 2, 3, 4, 5, 6]

; Using cutpoints

table = FREQTABLE(x, nxbins, y, nybins, Cutpoints = cp)

PM, table, Format = "(6(F8.5, 2X))", $

 Title = ’ counts’

 counts

 3.00000 2.00000 4.00000 0.00000 0.00000 0.00000

 0.00000 5.00000 5.00000 2.00000 0.00000 0.00000

 0.00000 0.00000 1.00000 3.00000 2.00000 0.00000

 0.00000 0.00000 0.00000 0.00000 0.00000 2.00000

 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000

42 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

SORTDATA Function
Sorts observations by specified keys, with option to tally cases into a multiway
frequency table.

Usage

result = SORTDATA(x, n_keys)

Input Parameters

x — One- or two-dimensional array containing the observations to be sorted.

n_keys — Number of columns of x on which to sort. The first n_keys columns
of x are used as the sorting keys. (Exception: See keyword Indices_Keys).

Returned Value

result — The sorted array.

Input Keywords

Double — If present and nonzero, double precision is used.

Indices_Keys — One-dimensional array of length n_keys giving the column
numbers of x which are to be used in the sort.

Default: Indices_Keys(*) = 0, 1, ..., n_keys – 1

Frequencies — One-dimensional array containing the frequency for each obser-
vation in x.

Default: Frequencies (*) = 1

Ascending — If present and nonzero, the sort is in ascending order. (Default)
Keywords Ascending and Descending cannot be used together.

Descending — If present and nonzero, the sort is in descending order. Key-
words Ascending and Descending cannot be used together.

SORTDATA Function 43

Output Keywords

Permutation — Named variable into which a one-dimensional array containing
the rearrangement (permutation) of the observations (rows) is stored.

Table_N — Named variable into which a one-dimensional array of length
n_keys, containing in its i-th element (i = 0, 1, ..., (n_keys – 1)) the number of
levels or categories of the i-th classification variable (column), is stored. Key-
words Table_N, Table_Values, and Table_Bal must be used together.

Table_Values — Named variable into which an array of length Table_N(0) +
Table_N(1) + ... + Table_N(n_keys – 1), containing the values of the classifica-
tion variables, is stored. The first Table_N(0) elements of Table_Values contain
the values for the first classification variable. The next Table_N(1) contain the
values for the second variable. The last Table_N(n_keys – 1) positions contain
the values for the last classification variable. Keywords Table_N, Table_Values,
and Table_Bal must be used together.

Table_Bal — Named variable into which an array of length Table_N(0) +
Table_N(1) + ... + Table_N(n_keys – 1), containing the frequencies in the cells
of the table to be fit, is stored. Empty cells are included in Table_Bal, and each
element of Table_Bal is nonnegative. The cells of Table_Bal are sequenced so
that the first variable cycles through its Table_N(0) categories one time, the sec-
ond variable cycles through its Table_N(1) categories Table_N(0) times, the
third variable cycles through its Table_N(2) categories Table_N(0) x Table_N(1)
times, etc., up to the n_keys-th variable, which cycles through its
Table_N(n_keys – 1) categories

Table_N(0) + Table_N(1) + Table_N(n_keys – 2)

times. Keywords Table_N, Table_Values, and Table_Bal must be used together.

N_List_Cells — Named variable into which the number of nonempty cells is
stored. Keywords N_List_Cells, List_Cells, and Table_Unbal must be used
together.

List_Cells — Named variable into which the two-dimensional array of length
N_List_Cells x n_keys containing, for each row, a list of the levels of n_keys
corresponding classification variables that describe a cell, is stored. Keywords
N_List_Cells, List_Cells, and Table_Unbal must be used together.

Table_Unbal — Named variable into which the one-dimensional array of length
N_List_Cells containing the frequency for each cell is stored. Keywords
N_List_Cells, List_Cells, and Table_Unbal must be used together.

44 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

N_Cells — Named variable into which the a one-dimensional array containing
the number of observations per group is stored. A group contains observations
(rows) in x that are equal with respect to the method of comparison. The first
N_Cells (0) rows of the sorted x are in group number 1. The next N_Cells (1)
rows of the sorted x are in group number 2, etc. The last
N_Cells(N_ELEMENTS(N_Cells) – 1) rows of the sorted x are in group num-
ber N_ELEMENTS(N_Cells).

Discussion

Function SORTDATA can perform both a key sort and/or tabulation of frequen-
cies into a multiway frequency table.

Sorting

Function SORTDATA sorts the rows of real matrix x using particular columns
in x as the keys. The sort is algebraic with the first key as the most significant,
the second key as the next most significant, etc. When x is sorted in ascending
order, the resulting sorted array is such that the following is true:

• For i = 0, 1, ..., N_ELEMENTS (x(*, 0)) – 2,
x(1, Indices_Keys(0)) ≤ x(i + 1, Indices_Keys(0))

• For k = 1, ..., n_keys – 1, if
x(1, Indices_Keys(j)) = x(i + 1, Indices_Keys(j)) for
j = 0, 1, ..., k – 1, then
x(1, Indices_Keys(j)) = x(i + 1, Indices_Keys(k))

The observations also can be sorted in descending order.

The rows of x containing the missing value code NaN in at least one of the
specified columns are considered as an additional group. These rows are moved
to the end of the sorted x.

The sorting algorithm is based on a quicksort method given by Singleton (1969)
with modifications by Griffin and Redish (1970) and Petro (1970).

Frequency Tabulation

Function SORTDATA determines the distinct values in multivariate data and
computes frequencies for the data. This function accepts the data in the matrix x
but performs computations only for the variables (columns) in the first n_keys
columns of x (Exception: see optional keyword Indices_Keys). In general, the
variables for which frequencies should be computed are discrete; they should
take on a relatively small number of different values. Variables that are continu-

SORTDATA Function 45

ous can be grouped first. The function FREQTABLE can be used to group
variables and determine the frequencies of groups.

When Table_N, Table_Values, and Table_Bal are specified, SORTDATA fills the
vector Table_Values with the unique values of the variables and tallies the num-
ber of unique values of each variable in the vector Table_Bal. Each combination
of one value from each variable forms a cell in a multiway table. The frequen-
cies of these cells are entered in Table_Bal so that the first variable cycles
through its values exactly once and the last variable cycles through its values
most rapidly. Some cells cannot correspond to any observations in the data; in
other words, “missing cells” are included in the Table_Bal table and have a
value of zero.

When N_List_Cells, List_Cells, and Table_Unbal are specified, the frequency of
each cell is entered in Table_Unbal so that the first variable cycles through its
values exactly once and the last variable cycles through its values most rapidly.
All cells have a frequency of at least 1, i.e., there is no “missing cell.” The
array List_Cells can be considered “parallel” to Table_Unbal because row i of
List_Cells is the set of n_keys values that describes the cell for which row i of
Table_Unbal contains the corresponding frequency.

Example 1

The rows of a 10 x 3 matrix x are sorted in ascending order using Columns 0
and 1 as the keys. There are two missing values (NaNs) in the keys. The obser-
vations containing these values are moved to the end of the sorted array.

f = MACHINE(/Float)

c0 =[1.0, 2.0, 1.0, 1.0, 2.0, 1.0, f.NaN, 1.0,$

2.0, 1.0]

c1 =[1.0, 1.0, 1.0, 1.0, f.NaN, 2.0, 2.0, 1.0,$

2.0, 1.0]

c2 =[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,$

9.0, 9.0]

x = [[c0], [c1], [c2]]

PM, x, Title = ’Unsorted Matrix’

Unsorted Matrix

 1.00000 1.00000 1.00000

 2.00000 1.00000 2.00000

1.00000 1.00000 3.00000

 1.00000 1.00000 4.00000

 2.00000 NaN 5.00000

46 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

 1.00000 2.00000 6.00000

 NaN 2.00000 7.00000

 1.00000 1.00000 8.00000

 2.00000 2.00000 9.00000

 1.00000 1.00000 9.00000

PM, SORTDATA(x, 2), Title = ’Sorted Matrix’

Sorted Matrix:

 1.00000 1.00000 1.00000

 1.00000 1.00000 9.00000

 1.00000 1.00000 3.00000

 1.00000 1.00000 4.00000

 1.00000 1.00000 8.00000

 1.00000 2.00000 6.00000

 2.00000 1.00000 2.00000

 2.00000 2.00000 9.00000

 NaN 2.00000 7.00000

 2.00000 NaN 5.00000

Example 2

This example uses the same data as the previous example. The permutation of
the rows is output using the keyword Permutation.

f = MACHINE(/Float)

c0 =[1.0, 2.0, 1.0, 1.0, 2.0, 1.0, f.NaN, 1.0,$

2.0, 1.0]

c1 =[1.0, 1.0, 1.0, 1.0, f.NaN, 2.0, 2.0, 1.0,$

2.0, 1.0]

c2 =[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,$

9.0, 9.0]

; Fill up a matrix, including some missing values.

x = [[c0], [c1], [c2]]

PM, x, Title = ’Unsorted Matrix’

; Output the unsorted matrix.

Unsorted Matrix

 1.00000 1.00000 1.0000

 2.00000 1.00000 2.00000

 1.00000 1.00000 3.00000

 1.00000 1.00000 4.00000

 2.00000 NaN 5.00000

 1.00000 2.00000 6.00000

SORTDATA Function 47

 NaN 2.00000 7.00000

 1.00000 1.00000 8.00000

 2.00000 2.00000 9.00000

 1.00000 1.00000 9.00000

y = SORTDATA(x, 2, Permutation = permutation)

; Use SORTDATA to sort x.

PM, y, Title = "Sorted Matrix:"

Sorted Matrix:

 1.00000 1.00000 1.00000

 1.00000 1.00000 9.00000

 1.00000 1.00000 3.00000

 1.00000 1.00000 4.00000

 1.00000 1.00000 8.00000

 1.00000 2.00000 6.00000

 2.00000 1.00000 2.00000

 2.00000 2.00000 9.00000

 NaN 2.00000 7.00000

 2.00000 NaN 5.00000

PM, permutation, Title = "Permutation Matrix:"

; Print the permutation vector.

Permutation Matrix:

 0

 9

 2

 3

 7

 5

 1

 8

 6

 4

z = x(permutation, *)

PM, z, Title = "Sorted Matrix"

; Use the permutation vector to sort the data.

Sorted Matrix

 1.00000 1.00000 1.00000

 1.00000 1.00000 9.00000

 1.00000 1.00000 3.00000

 1.00000 1.00000 4.00000

 1.00000 1.00000 8.00000

48 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

 1.00000 2.00000 6.00000

 2.00000 1.00000 2.00000

 2.00000 2.00000 9.00000

 NaN 2.00000 7.00000

 2.00000 NaN 5.00000

RANKS Function
Computes the ranks, normal scores, or exponential scores for a vector of
observations.

Usage

result = RANKS(x)

Input Parameters

x — One-dimensional array containing the observations to be ranked.

Returned Value

result — A one-dimensional array containing the rank (or optionally, a transfor-
mation of the rank) of each observation.

Input Keywords

Double — If present and nonzero, double precision is used.

Average_Tie, or
Highest, or
Lowest, or
Random_Split — At most, one of these keywords can be set to a nonzero value
to change the method used to assign a score to tied observations.

Keyword Method

Average_Tie average of the scores of the tied observa-
tions (default)

Highest highest score in the group of ties

Lowest lowest score in the group of ties

RANKS Function 49

Fuzz — Value used to determine when two items are tied. If
ABS(x(I) – x(J)) is less than or equal to Fuzz, then x(I) and x(J) are said to be
tied.

Default: Fuzz = 0.0

Ranks, or
Blom_Scores, or
Tukey_Scores, or
Vdw_Scores, or
Exp_Norm_Scores, or
Savage_Scores — At most, one of these keywords can be set to a nonzero
value to specify the type of values returned.

Discussion

Ties

If the assignment RANK = RANKS(x) is made, then in data without ties, the
output values are the ordinary ranks (or a transformation of the ranks) of the
data in x. If x(i) has the smallest value among the values in x and there is no
other element in x with this value, then RANK(i) = 1. If both x(i) and x(j) have

Random_Split tied observations are randomly split using a
random-number generator

Keyword Result

Ranks ranks (default)

Blom_Scores Blom version of normal scores

Tukey_Scores Tukey version of normal scores

Vdw_Scores Van der Waerden version of normal
scores

Exp_Norm_Scores expected value of normal order statis-
tics (for tied observations, the average
of the expected normal scores)

Savage_Scores Savage scores (expected value of expo-
nential order statistics)

Keyword Method

50 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

the same smallest value, then the output value depends on the option used to
break ties.

When the ties are resolved randomly, function RANDOM is used to generate
random numbers. Different results occur from different executions of the pro-
gram unless the “seed” of the random-number generator is set explicitly by use
of the function RANDOMOPT ().

Scores

Normal and other functions of the ranks can optionally be returned. Normal
scores can be defined as the expected values, or approximations to the expected
values, of order statistics from a normal distribution. The simplest approxima-
tions are obtained by evaluating the inverse cumulative normal distribution
function, NORMALCDF (with keyword Inverse), at the ranks scaled into the
open interval (0,1).

In the Blom version (Blom 1958), the scaling transformation for the rank
ri (1 ≤ ri ≤ n, where n is the sample size) is (ri – 3 / 8) / (n + 1 / 4). The Blom
normal score corresponding to the observation with rank ri is

where Φ(⋅) is the normal cumulative distribution function.

Adjustments for ties are made after the normal score transformation; that is, if
x(i) equals x(j) (within Fuzz) and their value is the k-th smallest in the data set,
the Blom normal scores are determined for ranks of k and k + 1. Then, these
normal scores are averaged or selected in the manner specified. (Whether the
transformations are made first or the ties are resolved first is irrelevant, except
when Average_Tie is specified.)

Keyword Result

Average_Tie result (i) = result (j) = 1.5

Highest result (i) = result (j) = 2.0

Lowest result (i) = result (j) = 1.0

Random_Split result (i) = 1.0 and result (j) = 2.0
or, randomly, result (i) = 2.0 and
result (j) = 1.0

Φ 1– ri 3 8⁄–
n 1 4⁄+

RANKS Function 51

In the Tukey version (Tukey 1962), the scaling transformation for the rank ri is
(ri – 1 / 3) / (n + 1 / 3). The Tukey normal score corresponding to the observa-
tion with rank ri follows:

Ties are handled in the same way as for the Blom normal scores.

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling transfor-
mation for the rank ri is ri / (n + 1). The Van der Waerden normal score
corresponding to the observation with rank ri is as follows:

Ties are handled in the same way as for the Blom normal scores.

When option Exp_Norm_Scores is nonzero, the output values are the expected
values of the normal order statistics from a sample of size
n = N_ELEMNTS(x). If the value in x(i) is the k-th smallest, then the value out-
put in RANK (i) is E(zk), where E(·) is the expectation operator, and zk is the k-
th order statistic in a sample of size n from a standard normal distribution. Ties
are handled in the same way as for the Blom normal scores.

Savage scores are the expected values of the exponential order statistics from a
sample of size n. These values are called Savage scores because of their use in
a test discussed by Savage (1956) and Lehmann (1975). If the value in x(i) is
the
k-th smallest, then the value output in RANK (i) is E(yk) where yk is the k-th
order statistic in a sample of size n from a standard exponential distribution.
The expected value of the k-th order statistic from an exponential sample of size
n follows:

Ties are handled in the same way as for the Blom normal scores.

Φ 1– ri 1 3⁄–
n 1 3⁄+

Φ 1– ri

n 1+

1
n

1
n 1–
------------ … 1

n k– 1+
---------------------+ + +

52 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

Example

The data for this example, from Hinkley (1977), contains 30 observations. Note
that the fourth and sixth observations are tied, and the third and twentieth obser-
vations are tied.

x = [0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,$

1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,$

0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,$

1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89,$

0.90, 2.05]

r = RANKS(x)

; Call RANKS.

FOR i = 0, 29 DO PM, i + 1, r(i), $

Format = ’(i5, f7.1)’

 1 5.0

 2 18.0

 3 6.5

 4 11.5

 5 21.0

 6 11.5

 7 2.0

 8 15.0

 9 29.0

 10 24.0

 11 27.0

 12 28.0

 13 16.0

 14 23.0

 15 3.0

 16 17.0

 17 13.0

 18 1.0

 19 4.0

 20 6.5

 21 26.0

 22 19.0

 23 10.0

 24 14.0

 25 30.0

 26 25.0

 27 9.0

RANKS Function 53

 28 20.0

 29 8.0

 30 22.0

54 Chapter 1: Basic Statistics PV-WAVE:IMSL Statistics Reference

55

CHAPTER

2

Regression

Contents of Chapter

Multiple Linear Regression

Generates regressors for a
general linear model................ REGRESSORS Function

Fits a multiple linear regression
model and optionally produces
summary statistics
for a regression model MULTIREGRESS Function

Computes predicted values,
confidence intervals,
and diagnostics MULTIPREDICT Function

Variable Selection

All best regressions ALLBEST Procedure

Stepwise regression STEPWISE Procedure

Polynomial and Nonlinear Regression

Fits a polynomial
regression model POLYREGRESS Function

Computes predicted values,
confidence intervals,
and diagnostics POLYPREDICT Function

56 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Fits a nonlinear
regression model. NONLINREGRESS Function

Multivariate Linear Regression—Statistical
Inference and Diagnostics

Construction of a completely
testable hypothesis HYPOTH_PARTIAL Function

Sums of cross products for a
multivariate hypothesis HYPOTH_SCPH Function

Tests for the multivariate
linear hypothesis HYPOTH_TEST Function

Polynomial and Nonlinear Regression

Fit a nonlinear regression model using
Powell’s algorithm NONLINOPT Function

Alternatives to Least Squares Regression

LAV, Lpnorm, and LMV
criteria regressionLNORMREGRESS Function

Introduction
The regression models in this chapter include the simple and multiple linear
regression models, the multivariate general linear model, the polynomial model,
and the nonlinear regression model. Functions for fitting regression models,
computing summary statistics from a fitted regression, computing diagnostics,
and computing confidence intervals for individual cases are provided. Also pro-
vided are methods for building a model from a set of candidate variables.

Simple and Multiple Linear Regression

The simple linear regression model is

yi = β0 + β1xi + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the
dependent variable, the xi’s are the settings of the independent (explanatory)
variable, β0 and β1 are the intercept and slope parameters (respectively), and the
εi’s are independently distributed normal errors, each with mean zero and vari-
ance σ2. The multiple linear regression model is

Introduction 57

yi = β0 + β1xi1 + β2xi2 + ... + βkxik + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the
dependent variable; the xi1’s, xi2’s, ..., xik’s are the settings of the k independent
(explanatory) variables; β0, β1, ... , βk are the regression coefficients; and the
εi’s are independently distributed normal errors, each with mean zero and vari-
ance σ2.

Function MULTIREGRESS (page 77) fits both the simple and multiple linear
regression models using a fast Given’s transformation and includes an option
for excluding the intercept β0. The responses are input in array y, and the inde-
pendent variables are input in array x, where the individual cases correspond to
the rows and the variables correspond to the columns. In addition to computing
the fit, MULTIREGRESS also can optionally compute summary statistics.

After the model has been fitted using MULTIREGRESS, function MULTI-
PREDICT (page 93) computes predicted values, confidence intervals, and case
statistics for the fitted model. The information about the fit is communicated
from MULTIREGRESS to MULTIPREDICT by using keyword Predict_Info.

No Intercept Model

Several functions provide the option for excluding the intercept from a model.
In most practical applications, the intercept should be included in the model.
For functions that use the sum-of-squares and crossproducts matrix as input, the
no-intercept case can be handled by using the raw sum-of-squares and
crossproducts matrix as input in place of the corrected sum-of-squares and
crossproducts. The raw sum-of-squares and crossproducts matrix can be com-
puted as

(x1, x2, ... , xk, y)T (x1, x2, ... , xk, y).

Variable Selection

Variable selection can be performed by ALLBEST (page 100), which computes
all best-subset regressions, or by STEPWISE (page 109), which computes step-
wise regression. The method used by ALLBEST is generally preferred over that
used by STEPWISE because ALLBEST implicitly examines all possible models
in the search for a model that optimizes some criterion while stepwise does not
examine all possible models. However, the computer time and memory require-
ments for ALLBEST can be much greater than that for STEPWISE when the
number of candidate variables is large.

58 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Polynomial Model

The polynomial model is

yi = β0 + β1 xi + β2 x2
i + ... + βk x

k
i + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the
dependent variable; the xi’s are the settings of the independent (explanatory)
variable; β0, β1, ..., βk are the regression coefficients; and the εi’s are indepen-
dently distributed normal errors each with mean zero and variance σ2.

Function POLYREGRESS (page 118) fits a polynomial regression model with
the option of determining the degree of the model and also produces summary
information. Function POLYPREDICT (page 125) computes predicted values,
confidence intervals, and case statistics for the model fit by POLYREGRESS.

The information about the fit is communicated from POLYREGRESS to
POLYPREDICT by using keyword Predict_Info.

Specification of X for the General Linear Model

Variables used in the general linear model are either continuous or classifica-
tion variables. Typically, multiple regression models use continuous variables,
whereas analysis of variance models use classification variables. Although the
notation used to specify analysis of variance models and multiple regression
models may look quite different, the models are essentially the same. The term
“general linear model” emphasizes that a common notational scheme is used for
specifying a model that may contain both continuous and classification
variables.

A general linear model is specified by its effects (sources of variation). An
effect is referred to in this text as a single variable or a product of variables.
(The term “effect” is often used in a narrower sense, referring only to a single
regression coefficient.) In particular, an “effect” is composed of one of the
following:

1. a single continuous variable

2. a single classification variable

3. several different classification variables

4. several continuous variables, some of which may be the same

5. continuous variables, some of which may be the same, and classification
variables, which must be distinct

Introduction 59

Effects of the first type are common in multiple regression models. Effects of
the second type appear as main effects in analysis of variance models. Effects
of the third type appear as interactions in analysis of variance models. Effects of
the fourth type appear in polynomial models and response surface models as
powers and crossproducts of some basic variables. Effects of the fifth type
appear in analysis of covariance models as regression coefficients that indicate
lack of parallelism of a regression function across the groups.

The analysis of a general linear model occurs in two stages. The first stage calls
function REGRESSORS (page 70) to specify all regressors except the inter-
cept. The second stage calls MULTIREGRESS (page 77), at which point the
model is specified as either having (default) or not having an intercept.

For the sake of this discussion, define a variable intcep as follows:

The remaining parameters and keywords (n_continuous, n_class,
Class_Columns, Var_Effects, and Indices_Effects) are defined for function
REGRESSORS. All have defaults except for n_continuous and n_class, both of
which must be specified. (See the documentation for REGRESSORS on
page 70 for a discussion of the defaults.) The meaning of each of these input
parameters is as follows:

n_continuous — Number of continuous variables.

n_class — Number of classification variables.

Class_Columns — Index vector containing the column numbers of x that are
the classification variables.

Var_Effects — Vector containing the number of variables associated with each
effect in the model.

Indices_Effects — Index vector containing the column numbers of x for each
variable for each effect.

Suppose the data matrix has as its first four columns two continuous variables
in Columns 0 and 1 and two classification variables in Columns 2 and 3. The
data might appear as follows:

Option intcep Action

No intercept 0 An intercept is not in the model.

Intercept (default) 1 An intercept is in the model.

Column 0 Column 1 Column 2 Column 3

11.23 1.23 1.0 5.0

60 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Each distinct value of a classification variable determines a level. The classifi-
cation variable in Column 2 has two levels. The classification variable in
Column 3 has three levels. (Integer values are recommended, but not required,
for values of the classification variables. The values of the classification vari-
ables corresponding to the same level must be identical.)

Some examples of regression functions and their specifications are as follows:

12.12 2.34 1.0 4.0

12.34 1.23 1.0 4.0

4.34 2.21 1.0 5.0

5.67 4.31 2.0 4.0

4.12 5.34 2.0 1.0

4.89 9.31 2.0 1.0

9.12 3.71 2.0 1.0

Regression Functions intcep n_class
Class_

Columns
Var_Effects

Indices_
Effects

β0 + β1x1 1 0 1 0

β0 + β1x1 + β2x2
1 1 0 1, 2 0, 0, 0

µ + αi 1 1 2 1 2

µ + αi + βj + γij 1 2 2, 3 1, 1, 2 2, 3, 2, 3

µij 0 2 2, 3 2 2, 3

β0 + β1x1 + β2x2 + β3x1x2 1 0 1, 1, 2 0, 1, 0, 1

µ + αi + βx1i + βix1i 1 1 2 1, 1, 2 2, 0, 0, 2

Column 0 Column 1 Column 2 Column 3

Introduction 61

Functions for Fitting the Model

Function MULTIREGRESS (page 77) fits a multiple general linear model,
where regressors for the general linear model have been generated using func-
tion REGRESSORS (page 70).

Linear Dependence and the R Matrix

Linear dependence of the regressors frequently arises in regression models—
sometimes by design and sometimes by accident. The functions in this chapter
are designed to handle linear dependence of the regressors; i.e., the n x p matrix
X (the matrix of regressors) in the general linear model can have rank less than
p. Often, the models are referred to as nonfull rank models.

As discussed in Searle (1971, Chapter 5), be careful to correctly use the results
of the fitted nonfull rank regression model for estimation and hypothesis testing.
In the nonfull rank case, not all linear combinations of the regression coeffi-
cients can be estimated. Those linear combinations that can be estimated are
called “estimable functions.” If the functions are used to attempt to estimate lin-
ear combinations that cannot be estimated, error messages are issued. A good
general discussion of estimable functions is given by Searle (1971, pp. 180–
188).

The check used by functions in this chapter for linear dependence is sequential.
The j-th regressor is declared linearly dependent on the preceding j – 1 regres-
sors if 1 – R2

j (1, 2, ..., j – 1) is less than or equal to keyword Tolerance. Here,
Rj (1, 2, ..., j – 1) is the multiple correlation coefficient of the j-th regressor with the
first j – 1 regressors. When a function declares the j-th regressor to be linearly
dependent on the first j – 1, the j-th regression coefficient is set to zero. Essen-
tially, this removes the j-th regressor from the model.

The reason a sequential check is used is that practitioners frequently include the
preferred variables to remain in the model first. Also, the sequential check is
based on many of the computations already performed as this does not degrade
the overall efficiency of the functions. There is no perfect test for linear depen-
dence when finite precision arithmetic is used. Keyword Tolerance allows the
user some control over the check for linear dependence. If a model is full rank,
input Tolerance = 0.0. However, Tolerance should be input as approximately
100 times the machine precision. (See function MACHINE.)

Functions performing least squares are based on the QR decomposition of X or
on a Cholesky factorization RTR of XTX. Maindonald (1984, Chapters 1–5) dis-
cusses these methods extensively. The R matrix used by the regression function
is a p x p upper-triangular matrix, i.e., all elements below the diagonal are zero.

62 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

The signs of the diagonal elements of R are used as indicators of linearly depen-
dent regressors and as indicators of parameter restrictions imposed by fitting a
restricted model. The rows of R can be partitioned into three classes by the sign
of the corresponding diagonal element:

1. A positive diagonal element means the row corresponds to data.

2. A negative diagonal element means the row corresponds to a linearly inde-
pendent restriction imposed on the regression parameters by AB = Z in a
restricted model.

3. A zero diagonal element means a linear dependence of the regressors was
declared. The regression coefficients in the corresponding row of

are set to zero. This represents an arbitrary restriction that is imposed to
obtain a solution for the regression coefficients. The elements of the corre-
sponding row of R also are set to zero.

Nonlinear Regression Model

The nonlinear regression model is

yi = f(xi ; θ) + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the
dependent variable, the xi’s are the known vectors of values of the independent
(explanatory) variables, f is a known function of an unknown regression param-
eter vector θ, and the εi’s are independently distributed normal errors each with
mean zero and variance σ2.

Function NONLINREGRESS (page 132) performs the least-squares fit to the
data for this model.

Weighted Least Squares

Functions throughout this chapter generally allow weights to be assigned to the
observations. Keyword Weights is used throughout to specify the weighting for
each row of X.

Computations that relate to statistical inference—e.g., t tests, F tests, and confi-
dence intervals—are based on the multiple regression model except that the
variance of εi is assumed to equal σ2 times the reciprocal of the corresponding
weight.

B
ˆ

Introduction 63

If a single row of the data matrix corresponds to ni observations, keyword Fre-
quencies can be used to specify the frequency for each row of X. Degrees of
freedom for error are affected by frequencies but are unaffected by weights.

Summary Statistics

Function MULTIREGRESS (page 77) can be used to compute statistics related
to a regression for each of the q dependent variables fitted. The summary statis-
tics include the model analysis of variance table, sequential sum of squares and
F-statistics, coefficient estimates, estimated standard errors, t-statistics, variance
inflation factors, and estimated variance-covariance matrix of the estimated
regression coefficients. Function POLYREGRESS (page 118) includes most of
the same functionality for polynomial regressions.

The summary statistics are computed under the model y = Xβ + ε, where y is
the
n x 1 vector of responses, X is the n x p matrix of regressors with rank (X) = r,
β is the p x 1 vector of regression coefficients, and ε is the n x 1 vector of
errors whose elements are independently normally distributed with mean zero
and variance
σ2 / wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as
the weights), most of the computed summary statistics are output in the follow-
ing keywords:

Anova_Table — One-dimensional array, usually of length 15. In STEPWISE,
Anova_Table is of length 13 because the last two elements of the array cannot
be computed from the input. The array contains statistics related to the analysis
of variance. The sources of variation examined are the regression, error, and
total. The first 10 elements of Anova_Table and the notation frequently used for
these is described in the following table (here, Aov replaces Anova_Table):

64 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Model Analysis of Variance Table

If the model has an intercept (default), the total sum of squares is the sum of
squares of the deviations of yi from its (weighted) mean

,

the so-called corrected total sum of squares denoted by the following:

If the model does not have an intercept (No_Intercept), the total sum of squares
is the sum of squares of yi — the so-called uncorrected total sum of squares
denoted by the following:

The error sum of squares is given as follows:

The error degrees of freedom is defined by DFE = n – r.

The estimate of σ2 is given by s2 = SSE/DFE, which is the error mean square.

The computed F statistic for the null hypothesis, H0:β1 = β2 = ... = βk = 0, ver-
sus the alternative that at least one coefficient is nonzero is given by F = MSR/
s2. The p-value associated with the test is the probability of an F larger than that
computed under the assumption of the model and the null hypothesis. A small

Source of
Variation

Degrees of
Freedom

Sum of
Squares

Mean
Square F p-value

Regression DFR = Aov (0) SSR = Aov (3) MSR = Aov (6) Aov (8) Aov (9)

Error DFE = Aov (1) SSE = Aov (4) s2 = Aov (7)

Total DFT = Aov (2) SST = Aov (5)

y

SST wi yi y–()2
n

∑=

SST wiyi
2

n

∑=

SSE wi yi ŷi–()2
n

∑=

Introduction 65

p-value (less than 0.05) is customarily used to indicate there is sufficient evi-
dence from the data to reject the null hypothesis.

The remaining five elements in Anova_Table frequently are displayed together
with the actual analysis of variance table. The quantities R-squared
(R2 = Anova_Table(10)) and adjusted R-squared (R2

a = Anova_Table(11)) are
expressed as a percentage and are defined as follows:

The square root of s2 (s = Anova_Table(12)) is frequently referred to as the esti-
mated standard deviation of the model error.

The overall mean of the responses

is output in Anova_Table (13).

The coefficient of variation (CV = Anova_Table(14)) is expressed as a percent-
age and defined by

.

T_Tests — Two-dimensional matrix containing the regression coefficient vector

as one column and associated statistics (estimated standard error, t statistic and
p-value) in the remaining columns.

Coef_Covariances — Estimated variance-covariance matrix of the estimated
regression coefficients.

Tests for Lack-of-Fit

Tests for lack-of-fit are computed for the polynomial regression by function
POLYREGRESS (page 118). Output keyword Ssq_Lof returns the lack-of-fit F
tests for each degree polynomial 1, 2, ..., k, that is fit to the data. These tests are
used to indicate the degree of the polynomial required to fit the data well.

R2 100 SSR/SST() 100 1 SSE/SST–()= =

Ra
2 100 1

s2

SST DFT⁄
-------------------------–

 =

y

CV 100s/y=

β
ˆ

66 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Diagnostics for Individual Cases

Diagnostics for individual cases (observations) are computed by two functions
in the regression chapter: MULTIPREDICT (page 93) for linear and nonlinear
regressions and POLYPREDICT (page 125) for polynomial regressions.

Statistics computed include predicted values, confidence intervals, and diagnos-
tics for detecting outliers and cases that greatly influence the fitted regression.

The diagnostics are computed under the model y = Xβ + ε, where y is the n x 1
vector of responses, X is the n x p matrix of regressors with rank (X) = r, β is
the p x 1 vector of regression coefficients, and ε is the n x 1 vector of errors
whose elements are independently normally distributed with mean zero and
variance σ2 / wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as
the weights), the following five diagnostics are computed:

1. leverage

2. standardized residual

3. jackknife residual

4. Cook’s distance

5. DFFITS

The definitions of these terms are given in the discussion below.

Let xi be a column vector containing the elements of the i-th row of X. A case
can be unusual either because of xi or because of the response yi. The leverage
hi is a measure of uniqueness of the xi. The leverage is defined by

where W = diag(w1, w2, ..., wn) and (XTWX)– denotes a generalized inverse of
XTWX. The average value of the hi’s is r/n. Regression functions declare xi
unusual if hi > 2r/n. Hoaglin and Welsch (1978) call a data point highly influen-
tial (i.e., a leverage point) when this occurs.

Let ei denote the residual

for the i-th case.

hi xi
T XTWX()

_
xi[]wi=

yi ŷi–

Introduction 67

The estimated variance of ei is (1 – hi)s
2 / wi, where s2 is the estimated standard

deviation of the model error. The i-th standardized residual (also called the
internally studentized residual) is by definition

and ri follows an approximate standard normal distribution in large samples.

The i-th jackknife residual or deleted residual involves the difference between yi
and its predicted value, based on the data set in which the i-th case is deleted.
This difference equals ei / (1 – hi). The jackknife residual is obtained by stan-
dardizing this difference. The residual mean square for the regression in which
the i-th case is deleted is as follows:

The jackknife residual is defined as

and ti follows a t distribution with n – r – 1 degrees of freedom.

Cook’s distance for the i-th case is a measure of how much an individual case
affects the estimated regression coefficients. It is given as follows:

Weisberg (1985) states that if Di exceeds the 50-th percentile of the F(r, n – r)
distribution, it should be considered large. (This value is about 1. This statistic
does not have an F distribution.)

ri ei

wi

s
2 1 hi–()

----------------------=

si
2 n r–()s2 wiei

2/ 1 hi–()–
n r– 1–

--=

ti ei

wi

si
2 1 hi–()

----------------------=

Di

wihiei
2

rs2 1 hi–()2
---------------------------=

68 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

DFFITS, like Cook’s distance, is also a measure of influence. For the i-th case,
DFFITS is computed by the following formula:

Hoaglin and Welsch (1978) suggest that DFFITS greater than

is large.

Transformations

Transformations of the independent variables are sometimes useful in order to
satisfy the regression model. The inclusion of squares and crossproducts of the
variables (x1, x2, x2

1, x2
2, x1x2) often is needed. Logarithms of the independent

variables also are used. (See Draper and Smith 1981, pp. 218–222;
Box and Tidwell 1962; Atkinson 1985, pp. 177–180; and Cook and Weisberg
1982, pp. 78–86.)

When the responses are described by a nonlinear function of the parameters, a
transformation of the model equation often can be selected so that the trans-
formed model is linear in the regression parameters. For example, by taking
natural logarithms on both sides of the equation, the exponential model

can be transformed to a model that satisfies the linear regression model
provided the εi’s have a log-normal distribution (Draper and Smith 1981, pp.
222–225).

When the responses are nonnormal and their distribution is known, a transfor-
mation of the responses often can be selected so that the transformed responses
closely satisfy the regression model assumptions. The square-root transforma-
tion for counts with a Poisson distribution and the arc-sine transformation for
binomial proportions are common examples (Snedecor and Cochran 1967,
pp. 325–330; Draper and Smith 1981, pp. 237–239).

DFFITSi ei

wihi

si
2 1 hi–()2

-------------------------=

2 r/n

y e
β0 β1x1+

ε=

Introduction 69

Alternatives to Least Squares

The method of least squares has desirable characteristics when the errors are
normally distributed, e.g., a least-squares solution produces maximum likeli-
hood estimates of the regression parameters. However, when errors are not
normally distributed, least squares may yield poor estimators. Function
LNORMREGRESS offers three alternatives to least squares methodology,
Least Absolute Value, Lp Norm, and Least Maximum Value.

The least absolute value (LAV, L1) criterion yields the maximum likelihood esti-
mate when the errors follow a Laplace distribution. Keyword Lav (page 170) is
often used when the errors have a heavy tailed distribution or when a fit is
needed that is resistant to outliers.

A more general approach, minimizing the Lp norm (p ≤ 1), is given by keyword
Llp (page 169). Although the routine requires about 30 times the CPU time for
the case p = 1 than would the use of keyword Lav, the generality of Llp allows
the user to try several choices for p ≥ 1 by simply changing the input value of p
in the calling program. The CPU time decreases as p gets larger. Generally,
choices of p between 1 and 2 are of interest. However, the Lp norm solution for
values of p larger than 2 can also be computed.

The minimax (LMV, L∞, Chebyshev) criterion is used by setting keyword Lmv
(page 170). Its estimates are very sensitive to outliers, however, the minimax
estimators are quite efficient if the errors are uniformly distributed.

Missing Values

NaN (Not a Number) is the missing value code used by the regression func-
tions. Use function MACHINE to retrieve NaN. Any element of the data matrix
that is missing must be set to NaN. In fitting regression models, any observation
containing NaN for the independent, dependent, weight, or frequency variables
is omitted from the computation of the regression parameters.

70 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

REGRESSORS Function
Generates regressors for a general linear model.

Usage

result = REGRESSORS(x, n_class, n_continuous)

Input Parameters

x — Two-dimensional array containing the data. The columns must be ordered
such that the first n_class columns contain the class variables and the next
n_continuous columns contain the continuous variables. (Exception: See key-
word Class_Columns.)

n_class — Number of classification variables.

n_continuous — Number of continuous variables.

Returned Value

result — A two-dimensional array containing the regressor variables generated
from x.

Input Keywords

Double — If present and nonzero, double precision is used.

Class_Columns — One-dimensional array of length n_class containing the col-
umn numbers of x that are the classification variables. The remaining
n_continuous variables are assumed to correspond to the columns of x in the
range 0, ..., n_class – 1 that are not listed in Class_Columns.

Default: Class_Columns = [0, 1, ..., n_class – 1]

Order — Order of the model. Model order can be specified as 1 or 2. Use key-
word Indices_Effects to specify more complicated models. The keywords
Var_Effects and Indices_Effects must be used together.

Default: Order = 1

Var_Effects — One-dimensional array containing the number of variables asso-
ciated with each effect in the model. The keywords Var_Effects and
Indices_Effects must be used together.

REGRESSORS Function 71

Indices_Effects — One-dimensional array of length Var_Effects (0) +
Var_Effects (1) + ... Var_Effects (N_ELEMENTS (Var_Effects) – 1) . The first
Var_Effects(0) elements give the column numbers of x for each variable in the
first effect. The next Var_Effects(1) elements give the column numbers for each
variable in the second effect. The last Var_Effects (N_ELEMENTS
(Var_Effects) – 1) elements give the column numbers for each variable in the
last effect. Keywords Var_Effects and Indices_Effects must be used together.

Dummy_Method — Dummy variable option. Indicator variables are defined for
each class variable as described in the Discussion section. Dummy variables are
then generated from the n indicator variables in one of the following three
ways:

Discussion

Function REGRESSORS generates regressors for a general linear model from a
data matrix. The data matrix can contain classification variables as well as con-
tinuous variables. Regressors for effects composed solely of continuous
variables are generated as powers and crossproducts. Consider a data matrix
containing continuous variables as Columns 3 and 4. The effect indices (3, 3)
generate a regressor whose i-th value is the square of the i-th value in Column
3. The effect indices (3, 4) generates a regressor whose i-th value is the product
of the i-th value in Column 3 with the i-th value in Column 4.

Regressors for an effect (source of variation) composed of a single classification
variable are generated using indicator variables. Let the classification variable A

Dummy_Method Method

(Default) The n indicator variables are the dummy
variables.

1 Dummies are the first n – 1 indicator variables.

2 The n – 1 dummies are defined in terms of the
indicator variables so that for balanced data, the
usual summation restrictions are imposed on the
regression coefficients.

72 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

take on values a1, a2, ..., an. From this classification variable, REGRESSORS
creates n indicator variables. For k = 1, 2, ..., n:

For each classification variable, another set of variables is created from the indi-
cator variables. These new variables are called dummy variables. Dummy
variables are generated from the indicator variables in one of three manners:

1. The dummies are the n indicator variables. (Default method)

2. The dummies are the first n – 1 indicator variables. (Dummy_Method = 1)

3. The n – 1 dummies are defined in terms of the indicator variables so that
for balanced data, the usual summation restrictions are imposed on the
regression coefficients. (Dummy_Method = 2)

In particular, for the default case, the dummy variables are
Ak = Ik (k = 1, 2, ..., n). For Dummy_Method = 1, the dummy variables are Ak =
Ik (k = 1, 2, ..., n – 1). For Dummy_Method = 2, the dummy variables are Ak =
Ik – In (k = 1, 2, ..., n – 1). The regressors generated for an effect composed of a
single-classification variable are the associated dummy variables.

Let mj be the number of dummies generated for the j-th classification variable.
Suppose there are two classification variables A and B with dummies

 and .

The regressors generated for an effect composed of two classification variables
A and B are

=

.

More generally, the regressors generated for an effect composed of several clas-
sification variables and several continuous variables are given by the Kronecker
products of variables, where the order of the variables is specified in
Indices_Effects. Consider a data matrix containing classification variables in
Columns 0 and 1 and continuous variables in Columns 2 and 3. Label these

Ik

1 if A = ak

0 otherwise

=

A1 A2 ... Am
1

, , , B1 B2 ... Bm2, , ,

A B⊗ A1 A2 ... Am1
, , ,() B1 B2 ... Bm2

, , ,()⊗=

A1B1 A1B2 ... A1Bm2
A2B1 A2B2 ... A2Bm2

..., , , ,, , , ,(

Am1
B1 Am1

B2 ... Am1
Bm2

), , ,

REGRESSORS Function 73

four columns A, B, X1, and X2. The regressors generated by the effect indices (0,
1, 2, 2, 3) are

A ⊗ B ⊗ X1X1X2 .

Remarks

Let the data matrix x = (A, B, X1), where A and B are classification variables
and X1 is a continuous variable. The model containing the effects A, B, AB, X1,
AX1, BX1, and ABX1 is specified as follows (use optional keyword
Indices_Effects):

n_class = 2

n_continuous = 1

Var_Effects = [1, 1, 2, 1, 2, 2, 3]

Indices_Effects = [0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2]

For this model, suppose that variable A has two levels, A1 and A2, and that vari-
able B has three levels, B1, B2, and B3. For each Dummy_Method option, the
regressors in their order of appearance in REGRESSORS are given below.

Within a group of regressors corresponding to an interaction effect, the indicator
variables composing the regressors vary most rapidly for the last classification
variable, next most rapidly for the next to last classification variable, etc.

By default, REGRESSORS internally generates values for Var_Effects and
Indices_Effects, which correspond to a first order model with
NEF = n_continuous + n_class. The variables then are used to create the
regressor variables. The effects are ordered such that the first effect corre-

Dummy_Method Regressors

(Default) A1, A2, B1, B2, B3, A1 B1, A1 B2, A1 B3, A2 B1, A2 B2,
A2 B3, X1, A1 X1, A2 X1, B1 X1, B2 X1, B3 X1, A1 B1 X1,
A1 B2 X1, A1 B3 X1, A2 B1 X1, A2 B2 X1, A2 B3 X1

1 A1, B1, B2, A1 B1, A1 B2, X1, A1 X1, B1 X1, B2 X1,
A1 B1 X1, A1 B2 X1

2 A1 – A2, B1 – B3, B2 – B3, (A1 – A2) (B1 – B2),
(A1 – A2) (B2 – B3), X1, (A1 – A2) X1, (B1 – B3) X1,
(B2 – B3) X1, (A1 – A2) (B1 – B2) X1, (A1 – A2) (B2 – B3) X1

74 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

sponds to the first column of x, the second effect corresponds to the second
column of x, etc. A second order model corresponding to the columns (vari-
ables) of x is generated if Order with Order = 2 is specified.

There are

effects, where NVAR = n_continuous + n_class. The first NVAR effects corre-
spond to the columns of x, such that the first effect corresponds to the first
column of x, the second effect corresponds to the second column of x, ..., the
NVAR-th effect corresponds to the NVAR-th column of x (i.e., x (NVAR – 1)).
The next n_continuous effects correspond to squares of the continuous vari-
ables. The last

effects correspond to the two-variable interactions.

• Let the data matrix x = (A, B, X1), where A and B are classification vari-
ables and X1 is a continuous variable. The effects generated and order of
appearance is A, B, X1, X2

1, AB, AX1, BX1.

• Let the data matrix x = (A, X1, X2), where A is a classification variable and
X1 and X2 are continuous variables. The effects generated and order of
appearance is A, X1, X2, X2

1, X2
2, AX1, AX2, X1X2.

• Let the data matrix x = (X1, A, X2) (see Class_Columns), where A is a clas-
sification variable and X1 and X2 are continuous variables. The effects
generated and order of appearance is X1, A, X2, X2

1, X2
2, X1A, X1X2, AX2.

Higher-order and more complicated models can be specified using
Indices_Effects.

Example 1

In the following example, there are two classification variables, A and B, with
two and three values, respectively. Regressors for a one-way model (the default
model order) are generated using the ALL dummy method (the default dummy
method). The five regressors generated are A1, A2, B1, B2, B3.

labels = ["A1", "A2", "B1", "B2", "B3"]

NEF n_class 2*n_continuous NVAR

2

+ +=

NVAR

2

REGRESSORS Function 75

; Define some labels for printing later.

RM, x, 6, 2

; Enter the data.

row 0: 10 5

row 1: 20 15

row 2: 20 10

row 3: 10 10

row 4: 10 15

row 5: 20 5

reg = REGRESSORS(x, 2, 0)

; Call REGRESSORS.

PM, labels, reg, $
Format = "(5a8, /, 6(5f8.1, /))"

; Print the results.

A1 A2 B1 B2 B3

1.0 0.0 1.0 0.0 0.0

0.0 1.0 0.0 0.0 1.0

0.0 1.0 0.0 1.0 0.0

1.0 0.0 0.0 1.0 0.0

1.0 0.0 0.0 0.0 1.0

0.0 1.0 1.0 0.0 0.0

Example 2

In this example, a two-way analysis of covariance model containing all the
interaction terms is fit. First, REGRESSORS is called to produce a matrix of
regressors, reg, from the data x. The regressors, generated using
Dummy_Method = 1, are the model whose mean function is

µ + αi + βj + γij + δxij + ζixij + ηjxij + θijxij i = 1, 2; j = 1, 2, 3

where α2 = β3 = γ21 = γ22 = γ23 = ζ2 = η3 = θ21 = θ22 = θ23 = 0 .

labels = ["Alpha1", "Beta1", "Beta2", $ "Gamma11", "Gamma12",
"Delta", "Zeta1", $
"Eta1", "Eta2", "Theta11", "Theta12"]

; Define some labels to use in printing the results.

x = transpose([[1.0, 1.0, 1.11], $
[1.0, 1.0, 2.22], [1.0, 1.0, 3.33], $
[1.0, 2.0, 1.11], [1.0, 2.0, 2.22], $
[1.0, 2.0, 3.33], [1.0, 3.0, 1.11], $
[1.0, 3.0, 2.22], [1.0, 3.0, 3.33], $
[2.0, 1.0, 1.11], [2.0, 1.0, 2.22], $

76 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

[2.0, 1.0, 3.33], [2.0, 2.0, 1.11], $
[2.0, 2.0, 2.22], [2.0, 2.0, 3.33], $
[2.0, 3.0, 1.11], [2.0, 3.0, 2.22], $
[2.0, 3.0, 3.33]])

Var_Effects = [1, 1, 2, 1, 2, 2, 3]

Indices_Effects = $
[0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2]

reg = REGRESSORS(x, 2, 1, Dummy_Method = 1, $

Var_Effects = var_effects, $

Indices_Effects = indices_effects)

; Call REGRESSORS.

PM, labels(0:5), reg(*, 0:5), $

Format = "(6a9, /, 18(6f9.2, /))"

; Output the results.

Alpha1 Beta1 Beta2 Gamma11 Gamma12 Delta

 1.0 1.0 0.0 1.0 0.0 1.1

 1.00 1.00 0.00 1.00 0.00 2.22

 1.00 1.00 0.00 1.00 0.00 3.33

 1.00 0.00 1.00 0.00 1.00 1.11

 1.00 0.00 1.00 0.00 1.00 2.22

 1.00 0.00 1.00 0.00 1.00 3.33

 1.00 0.00 0.00 0.00 0.00 1.11

 1.00 0.00 0.00 0.00 0.00 2.22

 1.00 0.00 0.00 0.00 0.00 3.33

 0.00 1.00 0.00 0.00 0.00 1.11

 0.00 1.00 0.00 0.00 0.00 2.22

 0.00 1.00 0.00 0.00 0.00 3.33

 0.00 0.00 1.00 0.00 0.00 1.11

 0.00 0.00 1.00 0.00 0.00 2.22

 0.00 0.00 1.00 0.00 0.00 3.33

 0.00 0.00 0.00 0.00 0.00 1.11

 0.00 0.00 0.00 0.00 0.00 2.22

 0.00 0.00 0.00 0.00 0.00 3.33

PM, labels(6:10), reg(*, 6:10), $
Format = "(5a9, /, 18(5f9.2, /))"

Zeta1 Eta1 Eta2 Theta11 Theta12

 1.1 1.1 0.0 1.1 0.0

2.22 2.22 0.00 2.22 0.00

3.33 3.33 0.00 3.33 0.00

1.11 0.00 1.11 0.00 1.11

2.22 0.00 2.22 0.00 2.22

MULTIREGRESS Function 77

3.33 0.00 3.33 0.00 3.33

1.11 0.00 0.00 0.00 0.00

2.22 0.00 0.00 0.00 0.00

3.33 0.00 0.00 0.00 0.00

0.00 1.11 0.00 0.00 0.00

0.00 2.22 0.00 0.00 0.00

0.00 3.33 0.00 0.00 0.00

0.00 0.00 1.11 0.00 0.00

0.00 0.00 2.22 0.00 0.00

0.00 0.00 3.33 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

MULTIREGRESS Function
Fits a multiple linear regression model using least squares and optionally com-
pute summary statistics for the regression model.

Usage

result = MULTIREGRESS(x, y)

Input Parameters

x — Two-dimensional matrix containing the independent (explanatory) vari-
ables. The data value for the i-th observation of the j-th independent
(explanatory) variable should be in element x(i, j).

y — Two-dimensional matrix containing of size N_ELEMENTS(x(*,0)) by
n_dependent containing the dependent (response) variables(s). The i-th column
of y contains the i-th dependent variable.

Returned Value

result — If keyword No_Intercept is not used, MULTIREGRESS is an array of
length N_ELEMENTS (x(*, 0)) containing a least-squares solution for the
regression coefficients. The estimated intercept is the initial component of the
array.

78 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Input Keywords

Double — If present and nonzero, double precision is used.

No_Intercept — If present and nonzero, the intercept term

is omitted from the model. By default, the fitted value for observation i is

,

where k is the number of independent variables.

Tolerance — Tolerance used in determining linear dependence. For MULTI-
GRESS, Tolerance = 100 x ε, where ε is machine precision, is the default
choice.

Frequencies — One-dimensional array containing the frequency for each
observation.

Default: Frequencies(*) = 1

Weights — One-dimensional array containing the weight for each observation.

Default: Weights(*) = 1

Predict_Info — Named variable into which the one-dimensional byte array
containing information needed by MULTIPREDICT (page 93) is stored. The
data contained in this array is in an encrypted format and should not be altered
before it is used in subsequent calls to MULTIPREDICT.

Output Keywords

Rank — Named variable into which the rank of the fitted model is stored.

Coef_Covariances — Named variable into which the m x m x n_dependent
array containing the estimated variances and covariances of the estimated
regression coefficients is stored. Here, m is the number of regression coeffi-
cients in the model. If No_Intercept is specified, m = N_ELEMENTS(x(0, *));
otherwise, m = (N_ELEMENTS(x(0, *)) + 1).

XMean — Named variable into which the array containing the estimated means
of the independent variables is stored.

β̂0

β̂0 β̂1x1 … β̂kxk+ + +

MULTIREGRESS Function 79

Residual — Named variable into which the array containing the residuals is
stored.

Anova_Table — Named variable into which the array containing the analysis of
variance table is stored. Each column of Anova_table corresponds to a depen-
dent variable. The analysis of variance statistics are given as follows:

T_Tests — Named variable into which the NPAR (where NPAR is equal to the
number of parameters in the model) by 4 array containing statistics relating to
the regression coefficients is stored.

Each row corresponds to a coefficient in the model, where NPAR is the num-
ber of parameters in the model. Row i + INTCEP corresponds to the i-th
independent variable, where INTCEP is equal to 1 if an intercept is in the

Element Analysis of Variance Statistic

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

80 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

model and 0 otherwise, and i = 0, 1, 2, ..., NPAR – 1. The statistics in the
columns are as follows:

Coef_Vif — Named variable into which a one-dimensional array of length
NPAR containing the variance inflation factor, where NPAR is the number of
parameters, is stored. The (i + INTCEP)-th element corresponds to the i-th inde-
pendent variable, where i = 0, 1, 2, ..., NPAR – 1, and INTCEP is equal to 1 if
an intercept is in the model and 0 otherwise. The square of the multiple correla-
tion coefficient for the i-th regressor after all others is obtained from Coef_Vif
by the following formula:

If there is no intercept or there is an intercept and i = 0, the multiple correla-
tion coefficient is not adjusted for the mean.

Discussion

Function MULTIREGRESS fits a multiple linear regression model with or with-
out an intercept.

By default, the multiple linear regression model is

yi = β0 + β1xi1 + β2xi2 + … + βkxik + εi i = 0, 2 , …, n

where the observed values of the yi’s (input in y) are the responses or values of
the dependent variable; the xi1’s, xi2’s, ..., xik’s (input in x) are the settings of the
k independent variables; β0, β1, ..., βk are the regression coefficients whose esti-
mated values are to be output by MULTIREGRESS; and the εi’s are
independently distributed normal errors, each with mean zero and variance σ2.
Here,
n = (N_ELEMENTS(x(*, 0))). Note that by default, β0 is included in the model.

Column Description

0 coefficient estimate

1 estimated standard error of the coefficient
estimate

2 t-statistic for the test that the coefficient is 0

3 p-value for the two-sided t test

1.0
1.0

Coef_Vif i()
----------------------------–

MULTIREGRESS Function 81

Function MULTIREGRESS computes estimates of the regression coefficients
by minimizing the weighted sum of squares of the deviations of the observed
response yi from the fitted response

for the n observations. This weighted minimum sum of squares (the error sum
of squares) is output as one of the analysis of variance statistics if Anova_Table
is specified and is computed as shown below.

Another analysis of variance statistics is the total sum of squares. By default,
the weighted total sum of squares is the weighted sum of squares of the devia-
tions of yi from its mean

,

the so-called corrected total sum of squares. This statistic is computed as
follows:

When No_Intercept is specified, the total weighted sum of squares is the sum of
squares of yi, the so called uncorrected total weighted sum of squares. This is
computed as follows:

See Draper and Smith (1981) for a good general treatment of the multiple linear
regression model, its analysis, and many examples.

In order to compute a least-squares solution, MULTIREGRESS performs an
orthogonal reduction of the matrix of regressors to upper-triangular form. The
reduction is based on one pass through the rows of the augmented matrix (x, y)
using fast Givens transformations (Golub and Van Loan 1983, pp. 156–162;

ŷi

SSE wi yi ŷi–()2

i 1=

n

∑=

y

SST wi yi y–()2

i 1=

n

∑=

SST wi yi
2

n

∑=

82 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Gentleman 1974). This method has the advantage that it avoids the loss of accu-
racy that results from forming the crossproduct matrix used in the normal
equations.

By default, the current means of the dependent and independent variables are
used to internally center the data for improved accuracy. Let xj be a column
vector containing the j-th row of data for the independent variables. Let

represent the mean vector for the independent variables given the data for rows
0, 1, ..., i. The current mean vector is defined to be

where the wj’s and the fj’s are the weights and frequencies. The i-th row of data
has

subtracted from it and is multiplied by

Although a crossproduct matrix is not computed, the validity of this centering
operation can be seen from the formula below for the sum-of-squares and
crossproducts matrix.

An orthogonal reduction on the centered matrix is computed. When the final
computations are performed, the intercept estimate and the first row and column
of the estimated covariance matrix of the estimated coefficients are updated (if
Coef_Covariances is specified) to reflect the statistics for the original (uncen-

xi

xi

wj fj xj
j 1=

i

∑
wj fj

----------------------------=

xi

wi f i

ai

ai 1–

wi f i xi xn–() xi xn–()T

i 1=

n

∑
ai

ai 1–
----------w i fi xi xi–() xi xi–()T

i 2=

n

∑=

MULTIREGRESS Function 83

tered) data. This means that the estimate of the intercept is for the uncentered
data.

As part of the final computations, MULTIGRESS checks for linearly dependent
regressors. In particular, linear dependence of the regressors is declared if any
of the following three conditions is satisfied:

• A regressor equals zero.

• Two or more regressors are constant.

• The expression

is less than or equal to Tolerance. Here, Ri·1, 2, ..., i – 1 is the multiple correla-
tion coefficient of the i-th independent variable with the first i –
1independent variables. If no intercept is in the model, the “multiple corre-
lation” coefficient is computed without adjusting for the mean.

On completion of the final computations, if the i-th regressor is declared to be
linearly dependent upon the previous i – 1 regressors, then the i-th coefficient
estimate and all elements in the i-th row and i-th column of the estimated vari-
ance-covariance matrix of the estimated coefficients (if Coef_Covariances is
specified) are set to zero. Finally, if a linear dependence is declared, an informa-
tional (error) message, code STAT_RANK_DEFICIENT, is issued indicating
the model is not full rank.

Function MULTIREGRESS also can be used to compute summary statistics
from a fitted general linear model. The model is y = Xβ + ε, where y is the n x
1 vector of responses, X is the n x p matrix of regressors, β is the p x 1 vector
of regression coefficients, and ε is the n x 1vector of errors whose elements are
each independently distributed with mean zero and variance σ2. Function MUL-
TIREGRESS uses the results of this fit to compute summary statistics,
including analysis of variance, sequential sum of squares, t tests, and an esti-
mated variance-covariance matrix of the estimated regression coefficients.

Some generalizations of the general linear model are allowed. If the i-th ele-
ment of ε has variance of

1 Ri 1 2 … i 1–, , ,⋅
2–

σ2

wi

84 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

and the weights wi are used in the fit of the model, MULTIREGRESS produces
summary statistics from the weighted least-squares fit. More generally, if the
variance-covariance matrix of ε is σ2V, MULTIREGRESS can be used to pro-
duce summary statistics from the generalized least-squares fit. Function
MULTIREGRESS can be used to perform a generalized least-squares fit by
regressing y*on X* where y* = (T –1)Ty, X* = (T –1)TX and T satisfies TTT = V.

The sequential sum of squares for the i-th regression parameter is given by

.

The regression sum of squares is given by the sum of the sequential sum of
squares. If an intercept is in the model, the regression sum of squares is
adjusted for the mean, i.e.,

is not included in the sum.

The estimate of σ2 is s2 (stored in Anova_Table(7) that is computed as SSE/
DFE.

If R is nonsingular, the estimated variance-covariance matrix of

(stored in Coef_Covariances) is computed by s2R
–1(R –1)T.

If R is singular, corresponding to rank(X) < p, a generalized inverse is used. For
a matrix G to be a gi (i = 1, 2, 3, or 4) inverse of a matrix A, G must satisfy
conditions j (for j ≤ i) for the Moore-Penrose inverse but generally must fail
conditions k (for k > i). The four conditions for G to be a Moore-Penrose
inverse of A are as follows:

1. AGA = A

2. GAG = G

3. AG is symmetric

4. GA is symmetric

In the case where R is singular, the method for obtaining Coef_Covariances fol-
lows the discussion of Maindonald (1984,

Rβ
ˆ

 2

Rβ
ˆ

 2

β
ˆ

MULTIREGRESS Function 85

pp. 101–103). Let Z be the diagonal matrix with diagonal elements defined by
the following:

Let G be the solution to RG = Z obtained by setting the i-th ({i:rii = 0}) row of
G to zero. Keyword Coef_Covariances is set to s2GGT. (G is a g3 inverse of R,
represented by

,

the result

is a symmetric g2 inverse of RTR = XTX. See Sallas and Lionti 1988.)

Note that keyword Coef_Covariances can be used only to get variances and
covariances of estimable functions of the regression coefficients, i.e., nonesti-
mable functions (linear combinations of the regression coefficients not in the
space spanned by the nonzero rows of R) must not be used. See, for example,
Maindonald (1984, pp. 166–168) for a discussion of estimable functions.

The estimated standard errors of the estimated regression coefficients (stored in
Column 1 of T_Tests) are computed as square roots of the corresponding diago-
nal entries in Coef_Covariances.

For the case where an intercept is in the model, set

equal to the matrix R with the first row and column deleted. Generally, the vari-
ance inflation factor (VIF) for the i-th regression coefficient is computed as the
product of the i-th diagonal element of RTR and the i-th diagonal element of its
computed inverse. If an intercept is in the model, the VIF for those coefficients
not corresponding to the intercept uses the diagonal elements of

(see Maindonald 1984, p. 40).

zii
1 if rii 0≠
0 ifrii 0=

=

R
g3

R
g3R

g3T

R

R
T
R

86 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Remarks

When R is nonsingular and comes from an unrestricted regression fit,
Coef_Covariances is the estimated variance-covariance matrix of the estimated
regression coefficients and Coef_Covariances = (SSE/DFE) (RTR)–1.

Otherwise, variances and covariances of estimable functions of the regression
coefficients can be obtained using Coef_Covariances and Coef_Covariances =
(SSE/DFE) (GDGT). Here, D is the diagonal matrix with diagonal elements
equal to zero if the corresponding rows of R are restrictions and with diagonal
elements equal to 1 otherwise. Also, G is a particular generalized inverse of R.

Example 1

A regression model

yi = β0 + β1x i 1 + β2x i 2 + β3 x i 3 + ε i i = 1, 2, ..., 9

is fitted to data taken from Maindonald (1984, pp. 203–204).

RM, x, 9, 3

; Set up the data.

 row 0: 7 5 6

 row 1: 2 -1 6

 row 2: 7 3 5

 row 3: -3 1 4

 row 4: 2 -1 0

 row 5: 2 1 7

 row 6: -3 -1 3

 row 7: 2 1 1

 row 8: 2 1 4

 y = [7, -5, 6, 5, 5, -2, 0, 8, 3]

; Call MULTIREGRESS to compute the coefficients.

 coefs = MULTIREGRESS(x, y)

; Output the results.

 PM, coefs, $
Title = ’Least-Squares Coefficients’, $
Format = ’(f10.5)’

 Least-Squares Coefficients

 7.73333

 -0.20000

 2.33333

 -1.66667

MULTIREGRESS Function 87

Example 2: Weighted Least-squares Fit

A weighted least-squares fit is computed using the model

yi = β0 + β1x i 1 + β2x i 2 + εi i = 1, 2, ..., 4

and weights 1/ i2 discussed by Maindonald (1984, pp. 67–68).

In the example, Weights is specified. The minimum sum of squares for error in
terms of the original untransformed regressors and responses for this weighted
regression is

where wi = 1 / i2, represented in the C code as array w.

First, a procedure is defined to output the results, including the analysis of vari-
ance statistics.

PRO print_results, Coefs, Anova_Table

coef_labels = ["intercept", "linear", $

"quadratic"]

PM, coef_labels, coefs, Title = $
"Least-Squares Polynomial Coefficients",$
Format = ’(3a20, /,3f20.4, //)’

anova_labels = $
["degrees of freedom for regression", $
"degrees of freedom for error", $
"total (corrected) degrees of freedom", $
"sum of squares for regression", $
"sum of squares for error", $
"total (corrected) sum of squares", $
"regression mean square", $
"error mean square", "F-statistic", $
"p-value", "R-squared (in percent)", $
"adjusted R-squared (in percent)", $
"est. standard deviation of model error", $
"overall mean of y", $
"coefficient of variation (in percent)"]

PM, ’* * * Analysis of Variance * * * ’, $
Format = ’(a50, /)’

FOR i = 0, 14 DO PM, anova_labels(i), $
anova_table(i), Format = ’(a40, f20.2)’

END

SSE wi yi ŷi–()2

4

∑=

88 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

RM, x, 4, 2

; Input the values for x.

row 0: -2 0

row 1: -1 2

row 2: 2 5

row 3: 7 3

y = [-3.0, 1.0, 2.0, 6.0]

; Define the dependent variables.

weights = FLTARR(4)

FOR i = 0, 3 DO weights(i) = 1/((i + 1.0)^2)

; Define the weights and print them.

PM, weights

1.00000

0.250000

0.111111

0.0625000

coefs = MULTIREGRESS(x, y, Weights = weights,$

Anova_Table = anova_table)

print_results, coefs, anova_table

; Print results using the procedure defined above.

Least-Squares Polynomial Coefficients

 intercept linear quadratic

 -1.4307 0.6581 0.7485

 * * * Analysis of Variance * * *

 degrees of freedom for regression 2.00

 degrees of freedom for error 1.00

 total (corrected) degrees of freedom 3.00

 sum of squares for regression 7.68

 sum of squares for error 1.01

 total (corrected) sum of squares 8.69

 regression mean square 3.84

 error mean square 1.01

 F-statistic 3.79

 p-value 0.34

 R-squared (in percent) 88.34

 adjusted R-squared (in percent) 65.03

est. standard deviation of model error 1.01

 overall mean of y -1.51

 coefficient of variation (in percent) -66.55

MULTIREGRESS Function 89

Example 3: Plotting Results

This example uses MULTIREGRESS to fit data with both simple linear regres-
sion and second order regression. The results are plotted along with confidence
bands and residual plots.

PRO MULTIREGRESS_ex

!P.Multi = [0, 2, 2]

x = [1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0,$

5.0, 5.0]

y = [1.1, 0.1, -1.2, 0.3, 1.4, 2.6, 3.1, 4.2, 9.3, 9.6]

z = FINDGEN(120)/20

line = MAKE_ARRAY(120, Value = 0.0)

; Perform a simple linear regression.

Coefs = MULTIREGRESS(x, y, $

Predict_Info = predict_info)

y_hat = MULTIPREDICT(predict_info, x, Residual = residual, Y =
y)

y_hat = MULTIPREDICT(predict_info, z, Ci_Ptw_New_Samp = ci)

PLOT, x, y, $

Title = ’Simple linear regression’, Psym = 4, XRange = [0.0,
6.0]

; Plot the regression.

y2 = coefs(0) + coefs(1) * z

OPLOT, z, y2

OPLOT, z, ci(0, *), Linestyle = 1

OPLOT, z, ci(1, *), Linestyle = 1

PLOT, x, residual, psym = 4, Title = $

’Residual plot for simple linear ’ + ’regression’, $

XRange = [0.0, 6.0], YRange = [-6, 6]

; Plot the residual.

OPLOT, z, line

x2 = [[x], [x * x]]

; Compute the second-order regression.

coefs = MULTIREGRESS(x2, y, Predict_Info = predict_info)

y_hat = MULTIPREDICT(predict_info, x2, Residual = residual, Y =
y)

 y_hat = MULTIPREDICT(predict_info, $

[[z], [z * z]], Ci_Ptw_New_Sample = ci)

90 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

PLOT, x, y, Title = ’2nd order regression’,$

Psym = 4, XRange = [0.0, 6.0]

; Plot the second-order regression.

y2 = coefs(0) + coefs(1) * z + coefs(2) * z * z

OPLOT, z, y2

OPLOT, z, ci(0, *), Linestyle = 1

OPLOT, z, ci(1, *), Linestyle = 1

PLOT, x2, residual, Psym = 4, $

Title = $

’Residual plot for 2nd order regression’, $

XRange = [0.0, 6.0], YRange = [-6, 6]

; Plot the residual.

OPLOT, z, line

END

Figure 2-1 Plots of fit with confidence bands and residuals.

MULTIREGRESS Function 91

Example 4: Two-variable, Second-degree Fit

In this example, MULTIREGRESS is used to compute a two variable second-
degree fit to data.

PRO MULTIREGRESS_ex

; Define the data.

x1 = FLTARR(10, 5)

x1(*, 0) = [8.5, 8.9, 10.6, 10.2, 9.8, $

10.8, 11.6, 12.0, 12.5, 10.9]

x1(*, 1) = [2, 3, 3, 20, 22, 20, 31, 32, 31, 28]

x1(*, 2) = x1(*, 0) * x1(*, 1)

x1(*, 3) = x1(*, 0) * x1(*, 0)

x1(*, 4) = x1(*, 1) * x1(*, 1)

y = [30.9, 32.7, 36.7, 41.9, 40.9, 42.9, $

 46.3, 47.6, 47.2, 44.0]

nxgrid = 30

nygrid = 30

; Setup vectors for surface plot. These will be (nxgrid x nygrid)
; elements each, evenly spaced over the range of the data
; in x1(*, 0) and x1(*, 1).

ax1 = min(x1(*, 0)) + (max(x1(*, 0)) - $
min(x1(*, 0))) * findgen(nxgrid)/$
(nxgrid - 1)

ax2 = min(x1(*, 1)) + (max(x1(*, 1)) - $
min(x1(*, 1))) * FINDGEN(nxgrid)/$
(nxgrid - 1)

coefs = MULTIREGRESS(x1, y, Residual = resid)

; Compute regression coefficients.

z = FLTARR(nxgrid, nygrid)

; Create two-dimensional array of evaluations of the regression
; model at points in grid established by ax1 and ax2.

FOR i = 0, nxgrid - 1 DO BEGIN

FOR j = 0, nygrid-1 DO BEGIN

z(i,j) = Coefs(0) $

+ Coefs(1) * ax1(i) + Coefs(2) * ax2(j) $

+ Coefs(3) * ax1(i) * ax2(j) $

+ Coefs(4) * ax1(i)^2 $

+ Coefs(5) * ax2(j)^2

END

END

!P.Charsize = 2

92 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

SURFACE, z, ax1, ax2, /Save, $
XTitle = "X1", YTitle = "X2"

PLOTS, x1(*, 0), x1(*, 1), y, /T3d, $
Psym = 4, Symsize = 3

XYOUTS, .3, .9, /Normal, $
"Two-Variable Second-Degree Fit"

; Plot the results.

END

Figure 2-2 Two-variable, second-degree fit.

Warning Errors

STAT_RANK_DEFICIENT — Model is not full rank. There is not a unique
least-squares solution.

MULTIPREDICT Function 93

MULTIPREDICT Function
Computes predicted values, confidence intervals, and diagnostics after fitting a
regression model.

Usage

result = MULTIPREDICT(predict_info, x)

Input Parameters

predict_info — One-dimensional byte array containing information computed
by MULTIREGRESS (page 77) and returned through keyword predict_info. The
data contained in this array is in an encrypted format and should not be altered
after it is returned by MULTIREGRESS.

x — Two-dimensional array containing the combinations of independent vari-
ables in each row for which calculations are to be performed.

Returned Value

result — One-dimensional array of length N_ELEMENTS (x(*, 0)) containing
the predicted values.

Input Keywords

Double — If present and nonzero, double precision is used.

Weights — One-dimensional array containing the weight for each row of x. The
computed prediction interval uses SSE / (DFE * Weights (1)) for the estimated
variance of a future response.

Default: Weights (*) = 1

Confidence — Confidence level for both two-sided interval estimates on the
mean and for two-sided prediction intervals, in percent. Keyword Confidence
must be in the range [0.0, 100.0). For one-sided intervals with confidence level,
where 50.0 ≤ c < 100.0, set Confidence = 100.0 – 2.0 * (100.0 – c).

Default: Confidence = 95.0

Y — Array of length N_ELEMENTS (x(*, 0)) containing the observed
responses.

94 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Output Keywords

Ci_Scheffe — Named variable into which the two-dimensional array of size 2
by N_ELEMENTS (x(*, 0)) containing the Scheffé confidence intervals corre-
sponding to the rows of x is stored. Element Ci_Scheffe (0, i) contains the i-th
lower confidence limit; Ci_Scheffe (1, i) contains the i-th upper confidence
limit.

Ci_Ptw_Pop_Mean — Named variable into which the two-dimensional array of
size 2 by N_ELEMENTS (x(*, 0)) containing the confidence intervals for two-
sided interval estimates of the means, corresponding to the rows of x, is stored.
Element Ci_Ptw_Pop_Mean (0, i) contains the i-th lower confidence limit;
Ci_Ptw_Pop_Mean (1, i) contains the i-th upper confidence limit.

Ci_Ptw_New_Samp — Named variable into which the two-dimensional array
of size 2 by N_ELEMENTS (x(*, 0)) containing the confidence intervals for
two-sided prediction intervals, corresponding to the rows of x, is stored.
Element Ci_Ptw_New_Samp (0, i) contains the i-th lower confidence limit;
Ci_Ptw_New_Samp (1, i) contains the i-th upper confidence limit.

Leverage — Named variable into which the one-dimensional array of length
N_ELEMENTS (x(*, 0)) containing the leverages is stored.

NOTE Y must be specified if any of the following keywords are specified:

Residual — Named variable into which the one-dimensional array of length
N_ELEMENTS (x(*, 0)) containing the residuals is stored.

Std_Residual — Named variable into which the one-dimensional array of
length N_ELEMENTS (x(*, 0)) containing the standardized residuals is stored.

Del_Residual — Named variable into which the one-dimensional array of
length N_ELEMENTS (x(*, 0)) containing the deleted residuals is stored.

Cooks_D — Named variable into which the one-dimensional array of length
N_ELEMENTS (x(*, 0)) containing the Cook’s D statistics is stored.

Dffits — Named variable into which the one-dimensional array of length
N_ELEMENTS (x(*, 0)) containing the DFFITS statistics is stored.

Discussion

The general linear model used by function MULTIPREDICT is

y = Xβ + ε

MULTIPREDICT Function 95

where y is the n x 1 vector of responses, X is the n x p matrix of regressors, β is
the p x 1 vector of regression coefficients, and ε is the n x 1 vector of errors
whose elements are independently normally distributed with mean zero and the
following variance:

 σ2 / wi

From a general linear model fit using the wi’s as the weights, function MULTI-
PREDICT computes confidence intervals and statistics for the individual cases
that constitute the data set. Let xi be a column vector containing elements of the
i-th row of X. Let W = diag(w1, w2, ..., wn). The leverage is defined as hi = (xT

i
(XTWX)–) xiwi. Put D = diag(d1, d2, ..., dp) with dj = 1 if the j-th diagonal ele-
ment of R is positive and zero otherwise. The leverage is computed as hi =
(aTDa)wi , where a is a solution to RTa = xi. The estimated variance of

is given by the following:

his
2 / wi, where s2 = SSE / DFE

The computation of the remainder of the case statistics follow easily from their
definitions. See the chapter introduction for definitions of the case diagnostics.

Informational errors can occur if the input matrix X is not consistent with the
information from the fit (contained in predict_info), or if excess rounding has
occurred. The warning error STAT_NONESTIMABLE arises when X contains a
row not in the space spanned by the rows of R. An examination of the model
that was fitted and the X for which diagnostics are to be computed is required in
order to ensure that only linear combinations of the regression coefficients that
can be estimated from the fitted model are specified in x. For further details, see
the discussion of estimable functions given in Maindonald (1984, pp. 166–168)
and Searle (1971, pp. 180–188).

Often predicted values and confidence intervals are desired for combinations of
settings of the independent variables not used in computing the regression fit.
This can be accomplished by defining a new data matrix. Since the information
about the model fit is input in predict_info, it is not necessary to send in the
data set used for the original calculation of the fit, i.e., only variable combina-
tions for which predictions are desired need be entered in x.

ŷ xi
TB̂=

96 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Example 1

This example calls MULTIPREDICT to compute predicted values after calling
MULTIREGRESS.

x = MAKE_ARRAY(13, 4)

; Define the data set.

x(0, *) = [7, 26, 6, 60]

x(1, *) = [1, 29, 15, 52]

x(2, *) = [11, 56, 8, 20]

x(3, *) = [11, 31, 8, 47]

x(4, *) = [7, 52, 6, 33]

x(5, *) = [11, 55, 9, 22]

x(6, *) = [3, 71, 17, 6]

x(7, *) = [1, 31, 22, 44]

x(8, *) = [2, 54, 18, 22]

x(9, *) = [21, 47, 4, 26]

x(10, *) = [1, 40, 23, 34]

x(11, *) = [11, 66, 9, 12]

x(12, *) = [10, 68, 8, 12]

y = [78.5, 74.3, 104.3, 87.6, 95.9, 109.2, $
102.7, 72.5, 93.1, 115.9, 83.8, 113.3,$
109.4]

coefs = MULTIREGRESS(x, y, $

Predict_Info = predict_info)

; Call MULTIREGRESS to compute the fit.

predicted = MULTIPREDICT(predict_info, x)

; Call MULTIPREDICT to compute predicted values.

PM, predicted, Title = "Predicted values"

; Output the predicted values.

Predicted values

 78.4952

 72.7888

 105.971

 89.3271

 95.6492

 105.275

 104.149

 75.6750

 91.7216

 115.618

 81.8090

MULTIPREDICT Function 97

 112.327

 111.694

Example 2

This example uses the same data set as the first example and also uses a num-
ber of keywords to retrieve additional information from MULTIPREDICT. First,
a procedure is defined to print the results.

PRO print_results, anova_table, t_tests, y,$

 predicted, ci_scheffe, residual, dffits

labels = ["df for among groups ", $
"df for within groups ", $
"total (corrected) df ", $
"ss for among groups ", $
"ss for within groups ", $
"total (corrected) ss ", $
"mean square among groups ", $
"mean square within groups ", $
"F-statistic ", $
"P-value ", $
"R-squared (in percent) ", $
"adjusted R-squared (in percent)", $
"est. std of within group error ", $
"overall mean of y ", $
"coef. of variation (in percent) "]

PRINT, " * * Analysis of Variance * *"

; Print the analysis of variance table.

PM, [[labels], [STRING(anova_table, $
Format = ’(f11.4)’)]]

PRINT

PRINT, "Coefficient s.e. t p-value"

PM, t_tests, Format = ’(f7.2, 4x, 3f7.2)’

PRINT

PRINT, " observed predicted lower" + $
"upper residual dffits"

PM, [[y], [predicted], $
[transpose(ci_scheffe)], $
[residual], [dffits]], Format = ’(6f10.2)’

END

x = MAKE_ARRAY(13, 4)

; Define the data set.

x(0, *) = [7, 26, 6, 60]

98 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

x(1, *) = [1, 29, 15, 52]

x(2, *) = [11, 56, 8, 20]

x(3, *) = [11, 31, 8, 47]

x(4, *) = [7, 52, 6, 33]

x(5, *) = [11, 55, 9, 22]

x(6, *) = [3, 71, 17, 6]

x(7, *) = [1, 31, 22, 44]

x(8, *) = [2, 54, 18, 22]

x(9, *) = [21, 47, 4, 26]

x(10, *) = [1, 40, 23, 34]

x(11, *) = [11, 66, 9, 12]

x(12, *) = [10, 68, 8, 12]

y = [78.5, 74.3, 104.3, 87.6, 95.9, 109.2, $
102.7, 72.5, 93.1, 115.9, 83.8,113.3, $
109.4]

coefs = MULTIREGRESS(x, y, $
Anova_Table = anova_table, $
T_Tests = t_tests, $
Predict_Info = predict_info, $
Residual = residual)

; Call MULTIREGRESS to compute the fit.

predicted = MULTIPREDICT(predict_info, x, $
Ci_scheffe = ci_scheffe, $
Y = y, $
Dffits = dffits)

; Call MULTIPREDICT.

print_results, anova_table, t_tests, y, $
predicted, ci_scheffe, residual, dffits

; Print the results.

* * Analysis of Variance * *

 df for among groups 4.0000

 df for within groups 8.0000

 total (corrected) df 12.0000

 ss for among groups 2667.8997

 ss for within groups 47.8637

 total (corrected) ss 2715.7634

 mean square among groups 666.9749

 mean square within groups 5.9830

 F-statistic 111.4791

 P-value 0.0000

 R-squared (in percent) 98.2376

 adjusted R-squared (in percent) 97.3563

MULTIPREDICT Function 99

 est. std of within group error 2.4460

 overall mean of y 95.4231

 coef. of variation (in percent) 2.5633

 Coefficient s.e. t p-value

 62.41 70.07 0.89 0.40

 1.55 0.74 2.08 0.07

 0.51 0.72 0.70 0.50

 0.10 0.75 0.14 0.90

 -0.14 0.71 -0.20 0.84

observed predicted lower upper residual dffits

 78.50 78.50 70.70 86.29 0.00
0.00

 74.30 72.79 66.73 78.85 1.51
0.52

 104.30 105.97 97.99 113.95 -1.67 -1.24

 87.60 89.33 83.62 95.03 -1.73 -
0.53

 95.90 95.65 89.37 101.93 0.25
0.09

 109.20 105.27 101.57 108.98 3.93
0.76

 102.70 104.15 97.79 110.51 -1.45 -0.55

 72.50 75.67 68.96 82.39 -3.17 -
1.64

 93.10 91.72 86.02 97.42 1.38
0.42

 115.90 115.62 106.83 124.41 0.28
0.30

 83.80 81.81 74.96 88.66 1.99
0.93

 113.30 112.33 106.94 117.71 0.97
0.26

 109.40 111.69 105.91 117.48 -2.29 -0.76

Warning Errors

STAT_NONESTIMABLE — Within the preset tolerance, the linear combination
of regression coefficients is nonestimable.

STAT_LEVERAGE_GT_1 — Leverage (= #) much greater than 1.0 is com-
puted. It is set to 1.0.

STAT_DEL_MSE_LT_0 — Deleted residual mean square (= #) much less
than zero is computed. It is set to zero.

100 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Fatal Errors

STAT_NONNEG_WEIGHT_REQUEST_2 — Weight for row # was #. Weights
must be nonnegative.

ALLBEST Procedure
Selects the best multiple linear regression models.

Usage

ALLBEST, x, y

Input Parameters

x — Two-dimensional array containing the data for the candidate variables.

y — One-dimensional array of length N_ELEMENTS (x(*, 0)) containing the
responses for the dependent variable.

Input Keywords

Double — If present and nonzero, double precision is used.

Weights — One-dimensional array of length N_ELEMENTS (x(*, 0)) contain-
ing the weight for each row of x.

Default: Weights(*) = 1

Frequencies — One-dimensional array of length N_ELEMENTS (x(*, 0)) con-
taining the frequency for each row of x.

Default: Frequencies (*) = 1

Max_Subset — The R2 criterion is used, where subset sizes
1, 2, ..., Max_Subset are examined. This option is the default with
Max_Subset = N_ELEMENTS (x(0, *)). Keywords Max_Subset,
Adj_R_Squared, and Mallows_Cp cannot be used together.

Adj_R_Squared — The adjusted R2 criterion is used, where subset sizes
1, 2, ..., N_ELEMENTS (x(*, 0)) are examined. Keywords Max_Subset,
Adj_R_Squared, and Mallows_Cp cannot be used together.

ALLBEST Procedure 101

Mallows_Cp — Mallows Cp criterion is used, where subset sizes
1, 2, ..., N_ELEMENTS (x(*, 0)) are examined. Keywords Max_Subset,
Adj_R_Squared, and Mallows_Cp cannot be used together.

Max_N_Best — Number of best regressions to be found. If the R2 criterion is
selected, the Max_N_Best best regressions for each subset size examined are
found. If the adjusted R2 or Mallows Cp criterion is selected, the Max_N_Best
overall regressions are found.

Default: Max_N_Best = 1

Max_N_Good — Maximum number of good regressions of each subset size to
be saved in finding the best regressions. Keyword Max_N_Good must be
greater than or equal to Max_N_Best. Normally, Max_N_Good should be less
than or equal to 10. It need not ever be larger than the maximum number of
subsets for any subset size. Computing time required is inversely related to
Max_N_Good.

Default: Max_N_Good = 10

Cov_Nobs — Number of observations associated with array Cov_Input. Key-
words Cov_Input and Cov_Nobs must be used together.

Cov_Input — Two-dimensional square array of size
(N_ELEMENTS (x(0, *)) + 1) by (N_ELEMENTS (x(0, *)) + 1) containing a
variance-covariance or sum-of-squares and crossproducts matrix, in which the
last column must correspond to the dependent variable.

Array Cov_Input can be computed using function COVARIANCES. Parameters
x and y, and keywords Frequencies and Weights are not accessed when this
option is specified. Normally, ALLBEST computes Cov_Input from the input
data matrices x and y. However, there may be cases when the user wants to cal-
culate the covariance matrix and manipulate it before calling ALLBEST. See
the Discussion section for a discussion of such cases.

Keywords Cov_Input and Cov_Nobs must be used together.

Output Keywords

Idx_Criterions — Named variable into which the one-dimensional array of
length NSIZE containing the locations in Criterions of the first element for each
subset size is stored. NSIZE is calculated as follows: NSIZE = (Max_Subset +
1) if Max_Subset is set. NSIZE = (N_ELEMENTS (x(0, *)) + 1) otherwise. For
i = 0, 1, ..., NSIZE – 2, element numbers Idx_Criterions(i), Idx_Criterions (i) +

102 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

1, ..., Idx_Criterions(i + 1) – 1 of Criterions correspond to the (i + 1)-st subset
size. Keywords Criterions and Idx_Criterions must be used together.

Criterions — Named variable into which the one-dimensional array of length
max(Idx_Criterions (NSIZE – 1), N_ELEMENTS (x(0, *)) containing in its first
Idx_Criterions (NSIZE – 1) elements the criterion values for each subset con-
sidered, in increasing subset size order, is stored. Keywords Criterions and
Idx_Criterions must be used together.

Idx_Vars — Named variable into which the one-dimensional array of length
NSIZE containing the locations in Indep_Vars of the first element for each sub-
set size. NSIZE is calculated as follows: NSIZE = (Max_Subset + 1) if
Max_Subset is set. NSIZE = (N_ELEMENTS(x(0, *)) + 1) otherwise.
For i = 0, 1, ..., NSIZE – 2, element numbers Idx_Vars(i), Idx_Vars (i) + 1, ...,
Idx_Vars (i + 1) – 1) of Indep_Vars correspond to the (i + 1)-st subset size.
Keywords Indep_Vars and Idx_Vars must be used together.

Indep_Vars — Named variable into which the one-dimensional array of length
Idx_Vars (NSIZE – 1) containing the variable numbers for each subset consid-
ered and in the same order as in Criterions is stored. Keywords Indep_Vars and
Idx_Vars must be used together.

Idx_Coefs — Named variable into which the one-dimensional array of length
NBEST + 1 containing the locations of Coefficients the first row of each of the
best regressions is stored. Here, NTBEST is the total number of best regression
found and is Max_Subset * Max_N_Best if Max_Subset is specified,
Max_N_Best if either Mallows_Cp or Adj_R_Squared is specified, and
Max_N_Best * (N_ELEMENTS (x(0, *))) otherwise. For i = 0, 1, ..., NTBEST,
rows Idx_Coefs (i), Idx_Coefs(i) + 1, ..., Idx_Coefs (i + 1) – 1 of Coefs corre-
spond to the (i + 1)-st regression. Keywords Coefs and Idx_Coefs must be used
together.

Coefs — Named variable into which the two-dimensional array of size
(Idx_Coefs (NTBEST)) x 5 containing statistics relating to the regression coeffi-
cients of the best models is stored. Each row corresponds to a coefficient for a
particular regression. The regressions are in order of increasing subset size.
Within each subset size, the regressions are ordered so that the better regres-
sions appear first. The statistic in the columns are as follows (inferences are
conditional on the selected model):

Column Description

0 variable number

ALLBEST Procedure 103

Keywords Coefs and Idx_Coefs must be used together.

Discussion

Procedure ALLBEST finds the best subset regressions for a regression problem
with

n_candidate = (N_ELEMENTS (x (0, *)))

independent variables. Typically, the intercept is forced into all models and is
not a candidate variable. In this case, a sum-of-squares and crossproducts matrix
for the independent and dependent variables corrected for the mean is com-
puted internally. There may be cases when it is convenient for the user to
calculate the matrix; see the description of the Cov_Input optional parameter.

“Best” is defined, on option, by one of the following three criteria:

• R2 (in percent)

• R2
a (adjusted R2 in percent)

Note that maximizing the criterion is equivalent to minimizing the residual
mean square:

• Mallows’ Cp statistic

1 coefficient estimate

2 estimated standard error of the estimate

3 t-statistic for the test that the coefficient is 0

4 p-value for the two-sided t test

Column Description

R2 100 1
SSEp

SST
------------–

 =

Ra
2 100 1

n 1–
n p–

 SSEp

SST
------------–=

SSEp

n p–()

104 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Here, n is equal to the sum of the frequencies (or N_ELEMENTS(x (*, 0)) if
Frequencies is not specified) and SST is the total sum of squares. SSEp is the
error sum of squares in a model containing p regression parameters including β0

(or p – 1 of the n_candidate candidate variables). Variable is the s2
n_candidate

error mean square from the model with all n_candidate variables in the model.
Hocking (1972) and Draper and Smith (1981, pp. 296–302) discuss these
criteria.

Procedure ALLBEST is based on the algorithm of Furnival and Wilson (1974).
This algorithm finds Max_N_Good candidate regressions for each possible sub-
set size. These regressions are used to identify a set of best regressions. In large
problems, many regressions are not computed. They may be rejected without
computation based on results for other subsets; this yields an efficient tech-
nique for considering all possible regressions.

There are cases when the user may wish to input the variance-covariance matrix
rather than allow the procedure ALLBEST to calculate it. This can be accom-
plished using keyword Cov_Input. Three situations in which the user may want
to do this are as follows:

1. The intercept is not in the model. A raw (uncorrected) sum-of-squares and
crossproducts matrix for the independent and dependent variables is
required. Keyword Cov_Nobs must be set to 1 greater than the number of
observations. Form ATA, where A = [A, Y], to compute the raw sum-of-
squares and crossproducts matrix.

2. An intercept is to be a candidate variable. A raw (uncorrected) sum-of-
squares and crossproducts matrix for the constant regressor (= 1.0), inde-
pendent variables, and dependent variables is required for Cov_Input. In this
case, Cov_Input contains one additional row and column corresponding to
the constant regressor. This row/column contains the sum of squares and
crossproducts of the constant regressor with the independent and dependent
variables. The remaining elements in Cov_Input are the same as in the pre-
vious case. Keyword Cov_Nobs must be set to 1 greater than the number of
observations.

3. There are m variables to be forced into the models. A sum-of-squares and
crossproducts matrix adjusted for the m variables is required (calculated by
regressing the candidate variables on the variables to be forced into the
model). Keyword Cov_Nobs must be set to m less than the number of
observations.

Cp

SSEp

sn_candidate
2

--------------------- 2p n–+=

ALLBEST Procedure 105

Programming Notes

Procedure ALLBEST saves considerable CPU time over explicitly computing
all possible regressions. However, the procedure has some limitations that can
cause unexpected results for users who are unaware of the limitations of the
software.

1. For n_candidate + 1 > –log2(ε), where ε is machine precision, some results
may be incorrect. This limitation arises because the possible models indi-
cated (the model numbers 1, 2, ..., 2n_candidate) are stored as floating-point
values; for sufficiently large n_candidate, the model numbers cannot be
stored exactly. On many computers, this means ALLBEST (for n_candidate
> 24; single precision) and ALLBEST (for n_candidate > 49; double preci-
sion) can produce incorrect results.

2. Procedure ALLBEST eliminates some subsets of candidate variables by
obtaining lower bounds on the error sum of squares from fitting larger mod-
els. First, the full model containing all n_candidate is fit sequentially using
a forward stepwise procedure in which one variable enters the model at a
time, and criterion values and model numbers for all the candidate vari-
ables that can enter at each step are stored. If linearly dependent variables
are removed from the full model, error STAT_VARIABLES_DELETED is
issued. If this error is issued, some submodels that contain variables
removed from the full model because of linear dependency can be over-
looked if they have not already been identified during the initial forward
stepwise procedure. If error STAT_VARIABLES_DELETED is issued and
the user wants the variables that were removed from the full model to be
considered in smaller models, rerun the program with a set of linearly inde-
pendent variables.

Example

This example uses a data set from Draper and Smith (1981, pp. 629-630). The
ALLBEST procedure is used to find the best regression for each subset size
using the Mallow’s Cp statistic as the criterion. Note that when Mallow’s Cp
statistic (or adjusted R2) is specified, the variable Max_N_Best indicates the
total number of “best” regressions (rather than indicating the number of best
regressions per subset size, as in the case of the R2 criterion). In this example,
the three best regressions are found to be (1, 2), (1, 2, 4), and (1, 2, 3).

PRO ALLBEST_ex1

; Define the data set.

x = transpose([$

106 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

[7., 26., 6., 60.], $

[1., 29., 15., 52.], $

[11., 56., 8., 20.], $

[11., 31., 8., 47.], $

[7., 52., 6., 33.], $

[11., 55., 9., 22.], $

[3., 71., 17., 6.], $

[1., 31., 22., 44.], $

[2., 54., 18., 22.], $

[21., 47., 4., 26.], $

[1., 40., 23., 34.], $

[11., 66., 9., 12.], $

[10., 68., 8., 12.]])

y = [78.5, 74.3, 104.3, 87.6, 95.9, $

109.2, 102.7, 72.5, 93.1, 115.9, $

83.8, 113.3, 109.4]

Max_N_Best = 3

ALLBEST, x, y, $

Max_N_Best = max_n_best, $

/Mallows_Cp, $

Idx_Coefs = idx_coefs, $

Coefs = coefs

PRINT, " * * * Idx_Coefs and Coefs ", $

"in raw form * * *"

; First, the two important matrices, Idx_Coefs and Coefs, are
; printed to display how they appear as output from ALLBEST.

PRINT

PM, idx_coefs, Title = "Idx_Coefs:"

PRINT

PM, Coefs, Title = "Coefs"

PRINT

ntbest = max_n_best

; Next, describe how Coefs is to be broken apart by regressions
; based on values of Idx_Coefs. Note: NTBEST is defined under the
; description of keyword Idx_Coefs.

PRINT, " * * * How Idx_Coefs ", $

"describes Coefs * * *"

PRINT

FOR i = 0, ntbest - 1 DO $

PRINT, "regression", i+1, $

ALLBEST Procedure 107

" begins at row ", Idx_Coefs(i), $

" of Coefs.", Format = ’(a, i2, a, i2, a)’

PRINT

PRINT, "* * * Coefs separated by ", "regressions * * *"

; Next, Coefs is broken apart by regressions, using Idx_Coefs.
; Note: The final element of Idx_Coefs is not a row number but
; instead is equal to the total number of rows in Coefs.

PRINT

FOR i = 0, ntbest - 1 DO begin

start = idx_coefs(i)

stop = idx_coefs(i + 1) - 1

FOR j = start, stop DO begin

PRINT, coefs(j, *), Format = ’(5f9.4)’

END

PRINT

END

PRINT, " * * * Best Regressions* * *"

 ; Finally, regression labels, column labels, etc., are added.

PRINT

FOR i = 0, ntbest - 1 DO begin
start = idx_coefs(i)
stop = idx_coefs(i + 1) - 1
count = stop - start + 1

PRINT, "Best Regression with", count, $
"variables(s) (Mallows CP)", $
Format = ’(a, i2, a)’

PRINT, "variable coefficient std " + $
"error t p-value"

FOR j = start, stop DO $

PRINT, coefs(j, *), $
Format = ’(i5, 2x, 4f11.4)’

PRINT

END

END

* * * Idx_Coefs and Coefs in raw form * * *

PM, Idx_Coefs

 0

 2

 5

 8

108 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

PM, Coefs

 1.00000 1.46831 0.121301 12.1046
2.38419e-07

 2.00000 0.662251 0.0458547 14.4424
0.00000

 1.00000 1.45194 0.116998 12.4099
5.96046e-07

 2.00000 0.416112 0.185611 2.24185
0.0516866

 4.00000 -0.236538 0.173288 -1.36500
0.205401

 1.00000 1.69589 0.204582 8.28953
1.66893e-05

 2.00000 0.656915 0.0442343 14.8508
1.19209e-07

 3.00000 0.250018 0.184711 1.35356
0.208889

* * * How Idx_Coefs describes Coefs * * *

regression 1 begins at row 0 of Coefs.

regression 2 begins at row 2 of Coefs.

regression 3 begins at row 5 of Coefs.

* * * Coefs separated by regressions * * *

1.0000 1.4683 0.1213 12.1046 0.0000

2.0000 0.6623 0.0459 14.4424 0.0000

1.0000 1.4519 0.1170 12.4099 0.0000

2.0000 0.4161 0.1856 2.2419 0.0517

4.0000 -0.2365 0.1733 -1.3650 0.2054

1.0000 1.6959 0.2046 8.2895 0.0000

2.0000 0.6569 0.0442 14.8508 0.0000

3.0000 0.2500 0.1847 1.3536 0.2089

* * * Best Regressions* * *

Best Regression with 2 variables(s) (Mallows CP)

variable coefficient std error t p-value

 1 1.4683 0.1213 12.1046 0.0000

 2 0.6623 0.0459 14.4424 0.0000

Best Regression with 3 variables(s) (Mallows CP)

variable coefficient std error t p-value

 1 1.4519 0.1170 12.4099 0.0000

 2 0.4161 0.1856 2.2419 0.0517

STEPWISE Procedure 109

 4 -0.2365 0.1733 -1.3650 0.2054

Best Regression with 3 variables(s) Mallows CP)

variable coefficient std error t p-value

 1 1.6959 0.2046 8.2895 0.0000

 2 0.6569 0.0442 14.8508 0.0000

 3 0.2500 0.1847 1.3536 0.2089

Warning Errors

STAT_VARIABLES_DELETED — At least one variable is deleted from the
full model because the variance-covariance matrix Cov is singular.

Fatal Errors

STAT_NO_VARIABLES — No variables can enter any model.

STEPWISE Procedure
Builds multiple linear regression models using forward, backward, or stepwise
selection.

Usage

STEPWISE, x, y

Input Parameters

x — Two-dimensional array containing the data for the candidate variables.

y — Array of length N_ELEMENTS(x(*, 0)) containing the responses for the
dependent variable.

Input Keywords

Double — If present and nonzero, double precision is used.

Weights — One-dimensional array containing the weight for each row of x.

Default: Weights (*) = 1

Frequencies — One-dimensional array containing the frequency for each row
of x.

110 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Default: Frequencies (*) = 1

First_Step or
Inter_Step or
Last_Step or
All_Steps — One or none of these options can be specified. If none of these is
specified, the action defaults to All_Steps.

N_Steps — For nonnegative N_Steps, N_Steps steps are taken. If N_STEPS = –
1, stepping continues until completion.

Default: N_STEPS = 1

Keyword N_Steps is not referenced if All_Steps is used.

Forward or
Backward or
Stepwise — One or none of these options can be specified. If none is specified,
the action defaults to Backward.

Keyword Action

First_Step This is the first invocation; additional calls will be made.
Initialization and stepping is performed.

Inter_Step This is an intermediate invocation. Stepping is performed.

Last_Step This is the final invocation. Stepping and wrap-up compu-
tations are performed.

All_Steps This is the only invocation. Initialization, stepping, and
wrap-up computations are performed.

Keyword Action

Forward An attempt is made to add a variable to the model. A
variable is added if its p-value is less than P_In. During
initialization, only the forced variables enter the model.

Backward An attempt is made to remove a variable from the model.
A variable is removed if its p-value exceeds P_Out. Dur-
ing initialization, all candidate independent variables enter
the model.

STEPWISE Procedure 111

P_In — Largest p-value for variable entering the model. Variables with p-val-
ues less than P_In may enter the model.

Default: P_In = 0.05

P_Out — Smallest p-value for removing variables with p-values greater than
P_Out may leave the model. Keyword P_Out must be greater than or equal to
P_In. A common choice for P_Out is 2*P_In.

Default: P_Out = 0.10

Tolerance — Tolerance used in determining linear dependence.

Default: Tolerance = 100*ε, where ε is machine precision.

Level — Array of length N_ELEMENTS(x(0, *)) + 1 containing levels of prior-
ity for variables entering and leaving the regression. Each variable is assigned a
positive value that indicates its level of entry into the model. A variable can
enter the model only after all variables with smaller nonzero levels of entry
have entered. Similarly, a variable can only leave the model after all variables
with higher levels of entry have left. Variables with the same level of entry
compete for entry (deletion) at each step.
Level(i) = 0 means the i-th variable is never to enter the model.
Level(i) = –1 means the i-th variable is the dependent variable.
Level (N_ELEMENTS(x(0, *))) must correspond to the dependent variable,
except when Cov_Input is specified.

Default: 1, 1, ..., 1, –1, where –1 corresponds to
Level (N_ELEMENTS(x(0, *)))

Force — Scalar integer specifying how variables are forced into the model as
independent variables. Variable with levels 1, 2, ..., Force are forced into the
model as independent variables. See Level.

Cov_Nobs — The number of observations associated with array Cov_Input.
Keywords Cov_Input and Cov_Nobs must be used together.

Cov_Input — Two-dimensional square array of size (N_ELEMENTS(x(0,*)) +
1) x (N_ELEMENTS(x(0,*)) + 1) containing a variance-covariance or sum-of-

Stepwise A backward step is attempted. If a variable is not
removed, a forward step is attempted. This is a stepwise
step. Only the forced variables enter the model during
initialization.

Keyword Action

112 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

squares and crossproducts matrix, in which the last column must correspond to
the dependent variable.

Array Cov_Input can be computed using function COVARIANCES. Parameters
x and y, and keywords Frequencies and Weights are not accessed when this
option is specified. Normally, ALLBEST computes Cov_Input from the input
data matrices x and y. However, there may be cases when the user wants to cal-
culate the covariance matrix and manipulate it before calling ALLBEST. See
the Discussion section for a discussion of such cases.

Keywords Cov_Input and Cov_Nobs must be used together.

Output Keywords

Anova_Table — Named variable into which the one-dimensional array contain-
ing the analysis of variance table is stored. The analysis of variance statistics
are as follows:

Coef_T_Tests — Named variable into which the two-dimensional array contain-
ing statistics relating to the regression coefficient for the final model in this

Element Analysis of Variance Statistic

0 degrees of freedom for regression

1 degrees of freedom for error

2 total degrees of freedom

3 sum of squares for regression

4 sum of squares for error

5 total sum of squares

6 regression mean square

7 error mean square

8 F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

STEPWISE Procedure 113

invocationing is stored. The rows correspond to the N_ELEMENTS(x(0, *)) in
dependent variables. The rows are in the same order as the variables in x (or, if
Cov_Input is specified, the rows are in the same order as the variables in
Cov_Input). Each row corresponding to a variable not in the model contains sta-
tistics for a model which includes the variables of the final model and the
variable corresponding to the row in question.

Coef_Vif — Named variable into which the two-dimensional array containing
variance inflation factors for the final model in this invocation is stored. The
elements correspond to the N_ELEMENTS (x(0, *)) in dependent variables. The
elements are in the same order as the variables in x (or, if Cov_Input is speci-
fied, the elements are in the same order as the variables in Cov_Input). Each
element corresponding to a variable not in the model contains statistics for a
model which includes the variables of the final model and the variables corre-
sponding to the element in question.

The square of the multiple correlation coefficient for the i-th regressor after all
others have been obtained from VIF = Coef_Vif(i) by the following formula:

1.0 – (1.0 / VIF)

Iend — Named variable into which an integer which indicates whether addi-
tional steps are possible is stored.

Swept — Named variable into which the one-dimensional array of length
(N_ELEMENTS(x(0, *)) + 1) with information to indicate the independent vari-
ables in the model is stored. Keyword Swept (N_ELEMENTS (x(0, *))) usually
corresponds to the dependent variable (see Level).

Column Description

0 coefficient estimate

1 estimated standard error of the coefficient
estimate

2 t-statistic for the test that the coefficient is zero

3 p-value for the two-sided t test

Iend Meaning

0 Additional steps may be possible.

1 No additional steps are possible.

114 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

History — Named variable into which the one-dimensional array of length
N_ELEMENTS (x(0, *)) + 1 containing the recent history of the independent
variables is stored.

Element History(N_ELEMENTS (x(0, *))) usually corresponds to the dependent
variable (see Level).

Cov_Swept — Named variable into which the two-dimensional array of size
N_ELEMENTS (x(0, *)) + 1) x (N_ELEMENTS (x(0, *)) + 1) that results after
Cov_Swept has been swept on the columns corresponding to the variables in the
model. The estimated variance-covariance matrix of the estimated regression
coefficients in the final model can be obtained by extracting the rows and col-
umns of Cov_Swept corresponding to the independent variables in the final
model and multiplying the elements of this matrix by Anova_Table(7).

Discussion

Procedure STEPWISE builds a multiple linear regression model using forward,
backward, or forward stepwise (with a backward glance) selection. Procedure
STEPWISE is designed so the user can monitor, and perhaps change, the vari-
ables added (deleted) to (from) the model after each step. In this case, multiple
calls to STEPWISE (using keywords First_Step, Inter_Step, or Last_Step) are
made. Alternatively, STEPWISE can be invoked once (default, or specify key-
word All_Steps) in order to perform the stepping until a final model is selected.

Swept (i) Status of i-th variable.

–1 Variable i is not in model.

1 Variable i is in model.

History (i) Status of i-th Variable

0.0 Variable has never been added to model.

0.5 Variable was added into the model during
initialization.

k > 0.0 Variable was added to the model during the
k-th step.

k < 0.0 Variable was deleted from model during the
k-th step.

STEPWISE Procedure 115

Levels of priority can be assigned to the candidate independent variables (use
keyword Level). All variables with a priority level of 1 must enter the model
before variables with a priority level of 2. Similarly, variables with a level of 2
must enter before variables with a level of 3, etc. Variables also can be forced
into the model (see keyword Force). Note that specifying keyword Force with-
out also specifying keyword Level results in all variables being forced into the
model.

Typically, the intercept is forced into all models and is not a candidate variable.
In this case, a sum-of-squares and crossproducts matrix for the independent and
dependent variables corrected for the mean is used. Other possibilities are as
follows:

• The intercept is not in the model. A raw (uncorrected) sum-of-squares and
crossproducts matrix for the independent and dependent variables is
required as input in Cov_Input. Keyword Cov_Nobs must be set to 1 greater
than the number of observations.

• An intercept is to be a candidate variable. A raw (uncorrected) sum-of-
squares and crossproducts matrix for the constant regressor (=1), indepen-
dent and dependent variables are required for Cov_Input. In this case,
Cov_Input contains one additional row and column corresponding to the
constant regressor. This row/column contains the sum-of-squares and
crossproducts of the constant regressor with the independent and dependent
variables. The remaining elements in Cov_Input are the same as in the pre-
vious case. Keyword Cov_Nobs must be set to 1 greater than the number of
observations.

The stepwise regression algorithm is due to Efroymson (1960). Procedure
STEPWISE uses sweeps of the covariance matrix (input using keyword
Cov_Input, if specified, or generated internally by default) to move variables in
and out of the model (Hemmerle 1967, Chapter 3). The SWEEP operator dis-
cussed in Goodnight (1979) is used. A description of the stepwise algorithm
also is given by Kennedy and Gentle (1980, pp. 335–340). The advantage of
stepwise model building over all possible regression (see ALLBEST, page 100)
is that it is less demanding computationally when the number of candidate inde-
pendent variables is very large. However, there is no guarantee that the model
selected will be the best model (highest R2) for any subset size of independent
variables.

116 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Example

This example uses a data set from Draper and Smith (1981, pp. 629-630). Back-
wards stepping is performed by default. First, a procedure to output the results
is defined.

PRO print_results, anova_table, t, s

 ; Define some labels for anova_table.

labels = ["df for regression ", $

"df for error ", $

"total df ", $

"ss for regression ", $

"ss for error ", $

"total ss ", $

"mean square for regression ", $

"mean square error ", $

"F-statistic ", $

"p-value ", $

"R-squared (in percent) ", $

"adjusted R-squared (in percent)"]

PRINT

PRINT, " * * Analysis of Variance * *"

 ; Print the table.

FOR i = 0, 11 DO PRINT, labels(i), $

anova_table(i), Format = ’(a32,f8.2)’

PRINT

PRINT, "* * Inference on Coefficients * *"

PRINT, " Estimate s.e. t" + $
" prob>t swept"

PRINT,"$(a, 4f10.4)","variable 1",t(0,*),s(0)

PRINT,"$(a, 4f10.4)","variable 2",t(1,*),s(1)

PRINT,"$(a, 4f10.4)","variable 3",t(2,*),s(2)

PRINT,"$(a, 4f10.4)","variable 4",t(3,*),s(3)

END

x = MAKE_ARRAY(13, 4)

; Define the data.

x(0, *) = [7., 26., 6., 60.]

x(1, *) = [1., 29., 15., 52.]

x(2, *) = [11., 56., 8., 20.]

x(3, *) = [11., 31., 8., 47.]

x(4, *) = [7., 52., 6., 33.]

STEPWISE Procedure 117

x(5, *) = [11., 55., 9., 22.]

x(6, *) = [3., 71., 17., 6.]

x(7, *) = [1., 31., 22., 44.]

x(8, *) = [2., 54., 18., 22.]

x(9, *) = [21., 47., 4., 26.]

x(10, *) = [1., 40., 23., 34.]

x(11, *) = [11., 66., 9., 12.]

x(12, *) = [10., 68., 8., 12.]

y = [78.5, 74.3, 104.3, 87.6, 95.9, $

109.2, 102.7, 72.5, 93.1, 115.9, $

83.8, 113.3, 109.4]

STEPWISE, x, y, Anova_Table = anova_table, $

Coef_T_Tests = t, swept = s

; Backward stepwise regression.

print_results, anova_table, t, s

; Print the analysis of variance table.

* * Analysis of Variance * *

 df for regression 2.00

 df for error 10.00

 total df 12.00

 ss for regression 2657.86

 ss for error 57.90

 total ss 2715.76

 mean square for regression 1328.93

 mean square error 5.79

 F-statistic 229.50

 P-value 0.00

 R-squared (in percent) 97.87

 adjusted R-squared (in percent) 97.44

* * Inference on Coefficients * *

 Estimate s.e. t prob>t
swept

variable 1 1.4683 0.1213 12.1046 0.0000 1.

variable 2 0.6623 0.0459 14.4423 0.0000 1.

variable 3 0.2500 0.1847 1.3536 0.2089 -1.

variable 4 -0.2365 0.1733 -1.3650 0.2054 -1.

118 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Warning Errors

STAT_LINEAR_DEPENDENCE_1 — Based on Tolerance = #, there are linear
dependencies among the variables to be forced.

Fatal Errors

STAT_NO_VARIABLES_ENTERED — No variables entered the model. All
elements of Anova_Table are set to NaN.

POLYREGRESS Function
Performs a polynomial least-squares regression.

Usage

result = POLYREGRESS(x, y, degree)

Input Parameters

x — One-dimensional array containing the independent variable.

y — One-dimensional array containing the dependent variable.

degree — Degree of the polynomial.

Returned Value

result — An array of size degree + 1 containing the coefficients of the fitted
polynomial.

Input Keywords

Double — If present and nonzero, double precision is used.

Weight — Array containing the vector of weights for the observation. If this
option is not specified, all observations have equal weights of 1.

Predict_Info — Named variable into which the one-dimensional byte array
containing information needed by function POLYPREDICT is stored. The data
contained in this array is in an encrypted format and should not be altered
before it is used in subsequent calls to POLYPREDICT.

POLYREGRESS Function 119

Output Keywords

Ssq_Poly — Named variable into which the array containing the sequential sum
of squares and other statistics are stored.

Elements (i, *) correspond to xi+1, i = 0, ..., (degree – 1), and the contents of the
array are described as follows:

Ssq_Lof — Named variable into which the array containing the lack-of-fit sta-
tistics is stored.

Elements (i, *) correspond to x i+1, i = 0, ..., (degree – 1), and the contents of
the array are described as follows:

XMean — Named variable into which the mean of x is stored.

XVariance — Named variable into which the variance of x is stored.

Anova_Table — Named variable into which the array containing the analysis of
variance table is stored.

The analysis of variance statistics are given as follows:

Element Description

 (i, 0) degrees of freedom

 (i, 1) sum of squares

 (i, 2) F-statistic

 (i, 3) p-value

Element Description

 (i, 0) degrees of freedom

 (i, 1) lack-of-fit sum of squares

 (i, 2) F-statistic for testing lack-of-fit for a polyno-
mial model of degree i

 (i, 3) p-value for the test

Element Analysis of Variance Statistic

0 degrees of freedom for the model

1 degrees of freedom for error

2 total (corrected) degrees of freedom

120 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Df_Pure_Error — Named variable into which the degrees of freedom for pure
error is stored.

Ssq_Pure_Error — Named variable into which the sum of squares for pure
error is stored.

Residual — Named variable into which the array containing the residuals is
stored.

Discussion

Function POLYREGRESS computes estimates of the regression coefficients in a
polynomial (curvilinear) regression model. In addition to the computation of the
fit, POLYREGRESS computes some summary statistics. Sequential sum of
squares attributable to each power of the independent variable (returned by
using Ssq_Poly) are computed. These are useful in assessing the importance of
the higher order powers in the fit. Draper and Smith (1981, pp. 101–102) and
Neter and Wasserman (1974, pp. 278–287) discuss the interpretation of the
sequential sum of squares.

3 sum of squares for the model

4 sum of squares for error

5 total (corrected) sum of squares

6 model mean square

7 error mean square

8 overall F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

Element Analysis of Variance Statistic

POLYREGRESS Function 121

The statistic R2 is the percentage of the sum of squares of y about its mean
explained by the polynomial curve. Specifically,

where wi is the weight,

is the fitted y value at xi and

is the mean of y. This statistic is useful in assessing the overall fit of the curve
to the data. R2 must be between 0% and 100%, inclusive. R2 = 100% indicates a
perfect fit to the data.

Estimates of the regression coefficients in a polynomial model are computed
using orthogonal polynomials as the regressor variables. This reparameterization
of the polynomial model in terms of orthogonal polynomials has the advantage
that the loss of accuracy resulting from forming powers of the x-values is
avoided. All results are returned to the user for the original model (power
form).

Function POLYREGRESS is based on the algorithm of Forsythe (1957). A
modification to Forsythe’s algorithm suggested by Shampine (1975) is used for
computing the polynomial coefficients. A discussion of Forsythe’s algorithm
and Shampine’s modification appears in Kennedy and Gentle (1980, pp. 342–
347).

Example 1

A polynomial model is fitted to data discussed by Neter and Wasserman (1974,
pp. 279–285). The data set contains the response variable y measuring coffee
sales (in hundred gallons) and the number of self-service coffee dispensers.
Responses for fourteen similar cafeterias are in the data set. A graph of the
results also is given.

x = [0, 0, 1, 1, 2, 2, 4, 4, 5, 5, 6, 6, 7, 7]

y = [508.1, 498.4, 568.2, 577.3, 651.7, $

657.0, 755.3, 758.9, 787.6, 792.1, 841.4,$

R2
wi ŷi y–()2∑
wi yi y–()2∑

--------------------------------100%=

ŷi

y

122 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

831.8, 854.7, 871.4]

; Define the data vectors.

coefs = POLYREGRESS(x, y, 2)

PM, Coefs, Title = $

"Least-Squares Polynomial Coefficients"

Least-Squares Polynomial Coefficients

 503.346

 78.9413

 -3.96949

x2 = 9 * FINDGEN(100)/99 - 1

PLOT, x2, coefs(0) + coefs(1) * x2 + $

coefs(2) * x2^2

OPLOT, x, y, Psym = 1

Figure 2-3 Plot of least-squares regression.

Example 2

This example is a continuation of the initial example. Here, a procedure is
called and defined to output the coefficients and analysis of variance table.

PRO print_results, coefs, anova_table

; The following procedure prints the coefficients and the analysis of
; variance table.

coef_labels = ["intercept", "linear", $

"quadratic"]

-2 0 2 4 6 8
0

200

400

600

800

1000

POLYREGRESS Function 123

PM, coef_labels, coefs, Title = $

 "Least-Squares Polynomial Coefficients",$

 Format = ’(3a20, /,3f20.4, //)’

anova_labels = $

["degrees of freedom for regression", $

"degrees of freedom for error", $

"total (corrected) degrees of freedom", $

"sum of squares for regression", $

"sum of squares for error", $

"total (corrected) sum of squares", $

"regression mean square", $

"error mean square", "F-statistic", $

"p-value", "R-squared (in percent)", $

"adjusted R-squared (in percent)", $

"est. standard deviation of model error", $

"overall mean of y", $

"coefficient of variation (in percent)"]

FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), Format = ’(a40, f20.2)’

END

x = [0, 0, 1, 1, 2, 2, 4, 4, 5, 5, 6, 6, 7, 7]

y = [508.1, 498.4, 568.2, 577.3, 651.7, $

657.0, 755.3, 758.9, 787.6, 792.1, 841.4,$

831.8, 854.7, 871.4]

; Define the data vectors.

Coefs = POLYREGRESS(x, y, 2, $

Anova_Table = anova_table)

; Call POLYREGRESS with keyword Anova_Table.

print_results, coefs, anova_table

; Call the procedure defined above to output the results.

Least-Squares Polynomial Coefficients

 intercept linear quadratic

 503.3459 78.9413 -3.9695

* * * Analysis of Variance * * *

degrees of freedom for regression 2.00

degrees of freedom for error 11.00

total (corrected) degrees of freedom 13.00

sum of squares for regression 225031.94

sum of squares for error 710.55

124 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

total (corrected) sum of squares 225742.48

regression mean square 112515.97

error mean square 64.60

F-statistic 1741.86

p-value 0.00

R-squared (in percent) 99.69

adjusted R-squared (in percent) 99.63

est. standard deviation of model error 8.04

overall mean of y 710.99

coefficient of variation (in percent) 1.13

Warning Errors

STAT_CONSTANT_YVALUES — The y values are constant. A zero order poly-
nomial is fit. High order coefficients are set to zero.

STAT_FEW_DISTINCT_XVALUES — There are too few distinct x values to
fit the desired degree polynomial. High order coefficients are set to zero.

STAT_PERFECT_FIT — A perfect fit was obtained with a polynomial of
degree less than degree. High order coefficients are set to zero.

Fatal Errors

STAT_NONNEG_WEIGHT_REQUEST_2 — All weights must be nonnegative.

STAT_ALL_OBSERVATIONS_MISSING — Each (x, y) point contains NaN.
There are no valid data.

STAT_CONSTANT_XVALUES — The x values are constant.

POLYPREDICT Function 125

POLYPREDICT Function
Computes predicted values, confidence intervals, and diagnostics after fitting a
polynomial regression model.

Usage

result = POLYPREDICT(predict_info, x)

Input Parameters

predict_info — One-dimensional byte array containing information computed
by function POLYREGRESS and returned through keyword Predict_Info. The
data contained in this array is in an encrypted format and should not be altered
after it is returned by POLYREGRESS.

x — One-dimensional array containing the values of the independent variable
for which calculations are to be performed.

Returned Value

result — One-dimensional array containing the predicted values.

Input Keywords

Double — If present and nonzero, double precision is used.

Weights — One-dimensional array containing the weight for each element of x.
The computed prediction interval uses SSE / (DFE * Weights (i)) for the esti-
mated variance of a future response.

Default: Weights (*) = 1

Confidence — Confidence level for both two-sided interval estimates on the
mean and for two-sided prediction intervals, in percent. Keyword Confidence
must be in the range (0.0, 100.0). For one-sided intervals with confidence level,
where
50.0 ≤ c < 100.0, set Confidence = 100.0 – 2.0 * (100.0 – c).

Default: Confidence = 95.0

Y — Array of length N_ELEMENTS (x) containing the observed responses.

126 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Output Keywords

Ci_Scheffe — Named variable into which the two-dimensional array of size 2
by N_ELEMENTS(x) containing the Scheffé confidence intervals, correspond-
ing to the rows of x, is stored. Element Ci_Scheffe (0, i) contains the i-th lower
confidence limit; Ci_Scheffe(1, i) contains the i-th upper confidence limit.

Ci_Ptw_Pop_Mean — Named variable into which the two-dimensional array of
size 2 by N_ELEMENTS(x) containing the confidence intervals for two-sided
interval estimates of the means, corresponding to the elements of x, is stored.
Element Ci_Ptw_Pop_Mean(0, i) contains the i-th lower confidence limit,
Ci_Ptw_Pop_Mean (1, i) contains the i-th upper confidence limit.

Ci_Ptw_New_Samp — Named variable into which the two-dimensional array
of size 2 by N_ELEMENTS(x) containing the confidence intervals for two-sided
prediction intervals, corresponding to the elements of x, is stored. Element
Ci_Ptw_New_Samp(0, i) contains the i-th lower confidence limit,
Ci_Ptw_New_Samp(1, i) contains the i-th upper confidence limit.

Leverage — Named variable into which the one-dimensional array of length
N_ELEMENTS(x) containing the leverages is stored.

NOTE Y must be specified if any of the following keywords are specified.

Residual — Named variable into which the one-dimensional array of length
N_ELEMENTS(x) containing the residuals is stored.

Std_Residual — Named variable into which the one-dimensional array of
length N_ELEMENTS(x) containing the standardized residuals is stored.

Del_Residual — Named variable into which the one-dimensional array of
length N_ELEMENTS(x) containing the deleted residuals is stored.

Cooks_D — Named variable into which the one-dimensional array of length
N_ELEMENTS(x) containing the Cook’s D statistics is stored.

Dffits — Named variable into which the one-dimensional array of length
N_ELEMENTS(x) containing the DFFITS statistics is stored.

Discussion

Function POLYPREDICT assumes a polynomial model

yi = β0 + β1xi + ..., βkx
k
i + εi i = 1, 2, ..., n

POLYPREDICT Function 127

where the observed values of the yi’s constitute the response, the xi’s are the set-
tings of the independent variable, the βj’s are the regression coefficients, and the
εi’s are the errors that are independently distributed normal with mean zero and
the following variance:

σ2 / wi

Given the results of a polynomial regression, fitted using orthogonal polynomi-
als and weights wi, function POLYPREDICT produces predicted values,
residuals, confidence intervals, prediction intervals, and diagnostics for outliers
and in influential cases.

Often, a predicted value and confidence interval are desired for a setting of the
independent variable not used in computing the regression fit. This is accom-
plished by simply using a different x matrix than was used for the fit when
calling POLYPREDICT (function POLYREGRESS, page 118).

Results from function POLYREGRESS, which produces the fit using orthogonal
polynomials, are used for input by the array predict_info. The fitted model from
POLYREGRESS is

where the zi’s are settings of the independent variable x scaled to the interval
[–2, 2] and the pj (z)’s are the orthogonal polynomials. The XTX matrix for this
model is a diagonal matrix with elements dj. The case statistics are easily com-
puted from this model and are equal to those from the original polynomial
model with βj’s as the regression coefficients.

The leverage is computed as follows:

The estimated variance of

is given by the following:

ŷi α̂0 p0 zi() α̂1 p1 zi() ... α̂k pk zi()+ + +=

hi wi dj
1– pj

2 zi()

k

∑=

ŷi

his2

wi

128 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

The computation of the remainder of the case statistics follow easily from their
definitions. See the chapter introduction for the definition of the
case diagnostics.

Often, predicted values and confidence intervals are desired for combinations of
settings of the independent variables not used in computing the regression fit.
This can be accomplished by defining a new data matrix. Since the information
about the model fit is input in predict_info, it is not necessary to send in the
data set used for the original calculation of the fit, i.e., only variable combina-
tions for which predictions are desired need be entered in x.

Example 1

A polynomial model is fit to data using function POLYREGRESS (page 118),
then POLYPREDICT is used to compute predicted values.

x = [0, 0, 1, 1, 2, 2, 4, $
4, 5, 5, 6, 6, 7, 7]

y = [58, 48, 58, 57, 61, 67, 70, $
74, 77, 72, 81, 85, 84, 81]

; Define the sample data set.

degree = 3

Coefs = POLYREGRESS(x, y, degree, $
Predict_Info = predict_info, $
x2 = 8 * FINDGEN(100)/99)

; Call POLYREGRESS using keyword Predict_Info.

predicted = POLYPREDICT(predict_info, x2)

; Call POLYPREDICT with Predict_Info.

PLOT, x, y, Psym = 4

; Plot the results.

OPLOT, x2, predicted

POLYPREDICT Function 129

Figure 2-4 Plot of original data with predicted values.

Example 2

A polynomial model is fit to the data discussed by Neter and Wasserman (1974,
pp. 279-285). The data set contains the response variable y measuring coffee
sales (in hundreds of gallons) and the number of self-service dispensers.
Responses for 14 similar cafeterias are in the data set. First, a procedure is
defined to print the ANOVA table.

PRO print_results, anova_table

; Define some labels for the anova table.

labels = ["df for among groups ", $

"df for within groups ", $

"total (corrected) df ", $

"ss for among groups ", $

"ss for within groups ", $

"total (corrected) ss ", $

"mean square among groups ", $

"mean square within groups ", $

"F-statistic ", $

"P-value ", $

"R-squared (in percent) ", $

130 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

"adjusted R-squared (in percent)", $

"est. std of within group error ", $

"overall mean of y ", $

"coef. of variation (in percent)"]

PRINT, " * * Analysis of Variance * *"

; Print the analysis of variance table.

FOR i = 0, 13 DO PRINT, labels(i), $

anova_table(i), Format = ’(a32,f10.2)’

END

x = [0, 0, 1, 1, 2, 2, 4, 4, 5, 5, 6, 6, 7, 7]

y = [508.1, 498.4, 568.2, 577.3, 651.7, $

657.0, 755.3, 758.9, 787.6, 792.1, $

841.4, 831.8, 854.7, 871.4]

degree = 2

coefs = POLYREGRESS(x, y, degree, $

Anova_Table = anova_table, $

predict_info = predict_info)

; Call POLYREGRESS to compute the fit.

predicted = POLYPREDICT(predict_info, x, $
Ci_Scheffe = ci_scheffe, $
Y = y, Dffits = dffits)

; Call POLYPREDICT.

PLOT, x, ci_scheffe(1, *), $

Yrange = [450, 900], Linestyle = 2

; Plot the results; confidence bands are dashed lines.

OPLOT, x, ci_scheffe(0, *), Linestyle = 2

OPLOT, x, y, Psym = 4

x2 = 7 * FINDGEN(100)/99

OPLOT, x2, POLYPREDICT(predict_info, x2)

print_results, anova_table

; Print the ANOVA table.

* * Analysis of Variance * *

df for among groups 2.00

df for within groups 11.00

total (corrected) df 13.00

ss for among groups 225031.94

ss for within groups 710.55

total (corrected) ss 225742.48

mean square among groups 112515.97

POLYPREDICT Function 131

mean square within groups 64.60

F-statistic 1741.86

P-value 0.00

R-squared (in percent) 99.69

adjusted R-squared (in percent) 99.63

est. std of within group error 8.04

overall mean of y 710.99

coef. of variation (in percent) 1.13

Figure 2-5 Predicted values with confidence bands.

Warning Errors

STAT_LEVERAGE_GT_1 — Leverage (= #) much greater than 1 is computed.
It is set to 1.0.

STAT_DEL_MSE_LT_0 — Deleted residual mean square (= #) much less than
zero is computed. It is set to zero.

Fatal Errors

STAT_NEG_WEIGHT — Keyword Weights(#) = #. Weights must be
nonnegative.

132 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

NONLINREGRESS Function
Fits a nonlinear regression model.

Usage

result = NONLINREGRESS(fcn, n_parameters, x, y)

Input Parameters

fcn — Scalar string specifying the name of a user-supplied function to evaluate
the function that defines the nonlinear regression problem. Function fcn accepts
the following input parameters and returns a scalar float:

• x — One-dimensional array containing the point at which point the function
is evaluated.

• theta — One-dimensional array containing the current values of the regres-
sion coefficients.
Function fcn returns a predicted value at the point x. In the following,
f(xi; θ), or just fi, denotes the value of this function at the point xi, for a
given value of θ. (Both xi and θ are arrays.)

n_parameters — Number of parameters to be estimated.

x — Two-dimensional array containing the matrix of independent (explanatory)
variables.

y — One-dimensional array of length N_ELEMENTS (x(*, 0)) containing the
dependent (response) variable.

Returned Value

result — A one-dimensional array of length n_parameters containing a
solution,

,

for the nonlinear regression coefficients.

Input Keywords

Double — If present and nonzero, double precision is used.

θ
ˆ

NONLINREGRESS Function 133

Theta_Guess — Array with n_parameters components containing an initial
guess.

Default: Theta_Guess(*) = 0

Jacobian — Scalar string specifying the name of a user-supplied function to
compute the i-th row of the Jacobian. This function accepts the following
parameters:

• X — One-dimensional array of length N_ELEMENTS (x(0, *)) containing
the data values corresponding to the i-th row.

• Theta — One-dimensional array of length n_parameters containing the
regression coefficients for which the Jacobian is evaluated.
The return value of this function is an array of length n_parameters con-
taining the computed n_parameters row of the Jacobian for observation i at
Theta. Note that each derivative ∂f(xi) / ¹∂θj should be returned in element (j
– 1) of the returned array for j = 1, 2, ..., n parameters.

Theta_Scale — One-dimensional array of length n_parameters containing the
scaling array for θ. Keyword Theta_Scale is used mainly in scaling the gradi-
ent and the distance between two points. See keywords Grad_Eps and Step_Eps
for more details.

Default: Theta_Scale(*) = 1

Grad_Eps — Scaled gradient tolerance. The j-th component of the scaled gradi-
ent at θ is calculated as

where , , and

.

The value F(θ) is the vector of the residuals at the point θ.

Default:

 (in double),

gj *max θ j 1 tj⁄,()
1
2
--- F θ() 2

2

g F θ()∇= t Theta_Scale=

F θ() 2

2
yi f xi θ;()–()2

i 1=

n∑=

Grad_Eps ε= ε3

134 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

where ε is the machine precision

Step_Eps — Scaled step tolerance. The j-th component of the scaled step from
points θ and θŠ′ is computed as

where t = Theta_Scale.

Default: Step_Eps = ε2 / 3, where ε is the machine precision

Sse_Rel_Eps — Relative SSE function tolerance.

Default: Sse_Rel_Eps = max(10–10, ε2 / 3), max (10–20, ε2 / 3) in double,
where ε is the machine precision

Abs_Eps_Sse — Absolute SSE function tolerance.

Default: Abs_Eps_Sse = max(10 –20, ε2), max(10 –40, ε2) in double, where
ε is the machine precision

Max_Step — Maximum allowable step size.

Default:

Max_Step = 1000 max(ε1, ε2), where ε1 = (tTθ0)1/2 ,

ε2 = ||t||2 , t = Theta_Scale, and θ0 = Theta_Guess

Trust_Region — Size of initial trust region radius. The default is based on the
initial scaled Cauchy step.

N_Digit — Number of good digits in the function.

Default: machine dependent

Itmax — Maximum number of iterations.

Default: Itmax = 100

Max_Sse_Evals — Maximum number of SSE function evaluations.

Default: Max Sse Evals = 400

Max_Jac_Evals — Maximum number of Jacobian evaluations.

Default: Max Jac Evals = 400

Tolerance — False convergence tolerance.

θj θ j
′–

max θ j 1 tj⁄,()

NONLINREGRESS Function 135

Default: Tolerance = 100 * ε, where ε is machine precision.

Output Keywords

Predicted — Named variable into which the one-dimensional array, containing
the predicted values at the approximate solution, is stored.

Residual — Named variable into which the one-dimensional array, containing
the residuals at the approximate solution, is stored.

R_Matrix — Named variable into which the two-dimensional array of size
n_parameters x n_parameters, containing the R matrix from a QR decomposi-
tion of the Jacobian, is stored.

R_Rank — Named variable into which the rank of the R matrix is stored. A
rank of less than n_parameters may indicate the model is overparameterized.

Df — Named variable into which the degrees of freedom is stored.

Sse — Named variable into which the residual sum of squares is stored.

Discussion

Function NONLINREGRESS fits a nonlinear regression model using least
squares. The nonlinear regression model is

yi = f(xi;θ) + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the
dependent variable, the known xi’s are the vectors of the values of the indepen-
dent (explanatory) variables, θ is the vector of p regression parameters, and the
εi’s are independently distributed normal errors with mean zero and variance σ2.
For this model, a least-squares estimate of θ is also a maximum likelihood esti-
mate of θ.

The residuals for the model are as follows:

ei(θ) = yi – f(xi ; θ) i = 1, 2, ..., n

A value of θ that minimizes

is a least-squares estimate of θ. Function NONLINREGRESS is designed so
that the values of the function f(xi ; θ) are computed one at a time by a user-
supplied function.

Σi 1=
n

ei θ()[]2

136 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Function NONLINREGRESS is based on MINPACK routines LMDIF and
LMDER by Moré et al. (1980) that use a modified Levenberg-Marquardt
method to generate a sequence of approximations to a minimum point. Let

be the current estimate of θ. A new estimate is given by

,

where sc is a solution to the following:

Here,

is the Jacobian evaluated at

.

The algorithm uses a “trust region” approach with a step bound of δc. A solu-
tion is first obtained for µc = 0. If

,

this update is accepted; otherwise, µc is set to a positive value and another solu-
tion is obtained. The method is discussed by Levenberg (1944), Marquardt
(1963), and Dennis and Schnabel (1983, pp. 129–147, 218–338).

If a user-supplied function is specified in Jacobian, the Jacobian is computed
analytically; otherwise, forward finite differences are used to estimate the Jaco-
bian numerically. In the latter case, especially if single precision is used, the
estimate of the Jacobian may be so poor that the algorithm terminates at a non-
critical point. In such instances, the user should either supply a Jacobian
function, use the Double keyword, or do both.

Programming Notes

Nonlinear regression allows substantial flexibility over linear regression because
the user can specify the functional form of the model. This added flexibility can
cause unexpected convergence problems for users who are unaware of the limi-

θˆ c

θ
ˆ

c sc+

J θ
ˆ

c()
T

J θ
ˆ

c() µcI+()sc J θ
ˆ

c()
T

e θ
ˆ

c()=

J θ
ˆ

c()

θ
ˆ

c

sc 2 δc<

NONLINREGRESS Function 137

tations of the software. Also, in many cases, there are possible remedies that
may not be immediately obvious. The following is a list of possible conver-
gence problems and some remedies. There is no one-to-one correspondence
between the problems and the remedies. Remedies for some problems also may
be relevant for other problems.

• A local minimum is found. Try a different starting value. Good starting val-
ues often can be obtained by fitting simpler models. For example, for a
nonlinear function

good starting values can be obtained from the estimated linear regression
coefficients

 and

from a simple linear regression of ln y on x. The starting values for the
nonlinear regression in this case would be

 and .

If an approximate linear model is not clear, then simplify the model by
reducing the number of nonlinear regression parameters. For example, some
nonlinear parameters for which good starting values are known could be set
to these values in order to simplify the model for computing starting values
for the remaining parameters.

• The estimate of θ is incorrectly returned as the same or very close to the
initial estimate. This occurs often because of poor scaling of the problem,
which might result in the residual sum of squares being either very large or
very small relative to the precision of the computer. The keywords allow
control of the scaling.

• The model is discontinuous as a function of θ. (The function f(x;θ) can be a
discontinuous function of x.)

• Overflow occurs during the computations. Make sure the user-supplied
functions do not overflow at some value of θ.

• The estimate of θ is going to infinity. A parameterization of the problem in
terms of reciprocals may help.

• Some components of θ are outside known bounds. This can sometimes be
handled by making a function that produces artificially large residuals out-

f x θ;() θ1eθ2x=

βˆ 0 βˆ 1

θ1 e β̂0= θ2 βˆ 1=

138 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

side of the bounds (even though this introduces a discontinuity in the model
function).

Example 1

In this example (Draper and Smith 1981, p. 518), the following nonlinear model
is fit:

.RUN

- FUNCTION fcn, x, theta

- RETURN, theta(0) + (0.49 - theta(0)) $

- *EXP(theta(1)*(x(0) - 8))

- END

x = [10, 20, 30, 40]

 y = [0.48, 0.42, 0.40, 0.39]

 n_parameters = 2

 theta_hat = NONLINREGRESS("fcn", n_parameters, x, y)

 PRINT, "Estimated Coefficients:", theta_hat

 Estimated Coefficients:
0.380714 -0.0794534

Example 2

Consider the nonlinear regression model and data set discussed by Neter et al.
(1983, pp. 475–478):

There are two parameters and one independent variable. The data set considered
consists of 15 observations.

FUNCTION fcn, x, theta

; Define the function that defines the nonlinear regression problem.

RETURN, theta(0) * EXP(x(0) * theta(1))

END

FUNCTION jac, x, theta

; Define the Jacobian function.

fjac = theta

; The following assignment produces an array of the correct size to

Y α 0.49 α–()e β X 8–()– ε++=

yi θ1eθ2xi εi+=

NONLINREGRESS Function 139

; use as the return value of the Jacobian.

fjac(0) = -exp(theta(1) * x(0))

fjac(1) = -theta(0) * x(0) * EXP(theta(1) $

* x(0))

RETURN, fjac

; Compute the Jacobian.

END

PRO nlnreg_ex

; Define x and y.

x = [2, 5, 7, 10, 14, 19, 26, 31, 34, 38, $

45, 52, 53, 60, 65]

y = [54, 50, 45, 37, 35, 25, 20, 16, 18, 13, $

8, 11, 8, 4, 6]

theta_hat = NONLINREGRESS("fcn", 2, x, y, $
Theta_Guess = [60, -0.03], $
Grad_Eps = 0.001, Jacobian = "jac")

; Call NONLINREGRESS.

PLOT, x, y, Psym = 4, $

Title = ’Nonlinear Regression’

; Plot original data.

xtmp = 80 * FINDGEN(200)/199

OPLOT, xtmp, theta_hat(0) * $
EXP(xtmp * theta_hat(1))

; Plot regression.

END

140 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Figure 2-6 Plot of original data and the nonlinear regression fit.

Informational Errors

STAT_STEP_TOLERANCE — Scaled step tolerance satisfied. The current point
may be an approximate local solution, but it is also possible that the algorithm
is making very slow progress and is not near a solution or that Step_Eps is too
big.

Warning Errors

STAT_LITTLE_FCN_CHANGE — Both the actual and predicted relative
reductions in the function are less than or equal to the relative function
tolerance.

STAT_TOO_MANY_ITN — Maximum number of iterations exceeded.

STAT_TOO_MANY_FCN_EVAL — Maximum number of function evaluations
exceeded.

STAT_TOO_MANY_JACOBIAN_EVAL — Maximum number of Jacobian eval-
uations exceeded.

STAT_UNBOUNDED — Five consecutive steps have been taken with the maxi-
mum step length.

HYPOTH_PARTIAL Function 141

STAT_FALSE_CONVERGENCE — Iterates appear to be converging to a non-
critical point.

HYPOTH_PARTIAL Function
Constructs an equivalent completely testable multivariate general linear hypoth-
esis HβU = G from a partially testable hypothesis HpβU = Gp.

Usage

result = HYPOTH_PARTIAL(info_v, hp)

Input Parameters

info_v — One-dimensional array of type BYTE containing information about
the regression fit. See function MULTIREGRESS.

hp —The Hp array of size nhp by n_coefficients with each row corresponding
to a row in the hypothesis and containing the constants that specify a linear
combination of the regression coefficients. Here, n_coefficients is the number of
coefficients in the fitted regression model.

Returned Value

result — Number of rows in the completely testable hypothesis, nh. This value
is also the degrees of freedom for the hypothesis. The value nh classifies the
hypothesis HpβU = Gp as nontestable (nh = 0), partially testable (0 < nh <
Rank_Hp) or completely testable (0 < nh = Rank_Hp), where Rank_Hp is the
rank of Hp (see keyword Rank_Hp).

Input Keywords

Double — If present and nonzero, double precision is used.

Gp — Two-dimensional array of size nhp by nu containing the Gp matrix, the
null hypothesis values. By default, each value of Gp is equal to 0.

Output Keywords

Rank_Hp — Named variable into which the rank of Hp is stored.

142 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

H_Matrix — Named variable into which a two-dimensional array of size nh by
n_parameters containing the H matrix is stored. Each row of H_Matrix corre-
sponds to a row in the completely testable hypothesis and contains the constants
that specify an estimable linear combination of the regression coefficients.

G_Matrix — Named variable into which a one-dimensional array of length nu
containing the G matrix is stored. The elements of G_Matrix contain the null
hypothesis values for the completely testable hypothesis.

Discussion

Once a general linear model y = Xβ + ε is fitted, particular hypothesis tests are
frequently of interest. If the matrix of regressors X is not full rank (as evidenced
by the fact that some diagonal elements of the R matrix output from the fit are
equal to zero), methods that use the results of the fitted model to compute the
hypothesis sum of squares (see function HYPOTH_SCPH, page 147) require
specification in the hypothesis of only linear combinations of the regression
parameters that are estimable. A linear combination of regression parameters
cTβ is estimable if there exists some vector a such that cT = aTX, i.e., cT is in
the space spanned by the rows of X. For a further discussion of estimable func-
tions, see Maindonald (1984, pp. 1661168) and Searle (1971, pp. 1802188).
Function HYPOTH_PARTIAL is only useful in the case of non-full rank regres-
sion models, i.e., when the problem of estimability arises.

Peixoto (1986) noted that the customary definition of testable hypothesis in the
context of a general linear hypothesis test Hβ = g is overly restrictive. He
extended the notion of a testable hypothesis (a hypothesis composed of estima-
ble functions of the regression parameters) to include partially testable and
completely testable hypothesis. A hypothesis Hβ = g is partially testable if the
intersection of the row space H (denoted by ℜ(H)) and the row space of X
(ℜ(X)) is not essentially empty and is a proper subset of ℜ(H), i.e., {0} ⊂ℜ(H)
∩ℜ(X) ⊂ℜ(H). A hypothesis Hβ = g is completely testable if {0} ⊂ℜ(H)
∩ℜ(H) ⊂ ℜ(X). Peixoto also demonstrated a method for converting a partially
testable hypothesis to one that is completely testable so that the usual method
for obtaining sums of squares for the hypothesis from the results of the fitted
model can be used. The method replaces Hp in the partially testable hypothesis
Hpβ = gp by a matrix H whose rows are a basis for the intersection of the row
space of Hp and the row space of X. A corresponding conversion of the null
hypothesis values from gp to g is also made. A sum of squares for the com-
pletely testable hypothesis can then be computed (see function
HYPOTH_SCPH). The sum of squares that is computed for the hypothesis Hβ
= g equals the difference in the error sums of squares from two fitted models—

HYPOTH_PARTIAL Function 143

the restricted model with the partially testable hypothesis Hpβ = gp and the
unrestricted model.

For the general case of the multivariate model Y = Xβ + ε with possible linear
equality restrictions on the regression parameters, HYPOTH_PARTIAL converts
the partially testable hypothesis Hpβ = gp to a completely testable hypothesis
HβU = G. For the case of the linear model with linear equality restrictions, the
definitions of the estimable functions, nontestable hypothesis, partially testable
hypothesis, and completely testable hypothesis are similar to those previously
given for the unrestricted model with the exception that ℜ(X) is replaced by
ℜ(R) where R is the upper triangular matrix based on the linear equality restric-
tions. The nonzero rows of R form a basis for the rowspace of the matrix (XT,
AT)T. The rows of H form an orthonormal basis for the intersection of two sub-
spaces—the subspace spanned by the rows of Hp and the subspace spanned by
the rows of R. The algorithm used for computing the intersection of these two
subspaces is based on an algorithm for computing angles between linear sub-
spaces due to Björk and Golub (1973). (See also Golub and Van Loan 1983, pp.
429430). The method is closely related to a canonical correlation analysis dis-
cussed by Kennedy and Gentle (1980, pp. 561565). The algorithm is as follows:

3. Compute a QR factorization of

with column permutations so that

Here, P1 is the associated permutation matrix that is also an orthogonal
matrix. Determine the rank of Hp as the number of nonzero diagonal ele-
ments of R1, for example n1. Partition Q1 = (Q11, Q12) so that Q11 is the
first n1 column of Q1. Set Rank_Hp = n.

4. Compute a QR factorization of the transpose of the R matrix (input through
info_v) with column permuations so that

HP
T

H Q R PP
T T= 1 1 1

R Q R PT T= 2 2 2

144 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Determine the rank of R from the number of nonzero diagonal elements of R,
for example n2. Partition Q2 = (Q21, Q22) so that Q21 is the first n2 columns of
Q2.

5. Form

6. Compute the singular values of A

and the left singular vectors W of the singular value decomposition of A so
that

If σ1 < 1, then the dimension of the intersection of the two subspaces is
s = 0. Otherwise, assume the dimension of the intersection to be s if
σs = 1 > σs+1. Set nh = s.

7. Let W1 be the first s columns of W. Set H = (Q1W1)T.

8. Assume R11 to be a nhp by nhp matrix related to R1 as follows: If nhp <
n_parameters, R11 equals the first nhp rows of R1. Otherwise, R11 contains
R1 in its first n_parameters rows and zeros in the remaining rows. Compute
a solution Z to the linear system

If this linear system is declared inconsistent, an error message with error
code equal to 2 is issued.

A Q QT= 11 21

σ1 σ2 … σmin n1 n2,()≥ ≥ ≥

WTAV σ1 …σmin n1 n2,(),()=

R Z P GT T
p11 1=

HYPOTH_PARTIAL Function 145

9. Partition

so that Z1 is the first n1 rows of Z. Set

The degrees of freedom (nh) classify the hypothesis HpβU =Gp as nontest-
able (nh = 0), partially testable (0 < nh < Rank_Hp), or completely testable
(0 < nh = Rank_Hp).

For further details concerning the algorithm, see Sallas and Lionti (1988).

Example

A one-way analysis-of-variance model discussed by Peixoto (1986) is fitted to
data. The model is

yii = µ + αi + εii (i, j) = (1, 1) (2, 1) (2, 2)

The model is fitted using function MULTIREGRESS (page 77). The partially
testable hypothesis

is converted to a completely testable hypothesis.

nrows = 3

n_indep = 1

n_dep = 1

n_param = 3

Z Z ZT T T= 1 2,� �

146 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

n_class = 1

n_cont = 0

nhp = 2

z = [1, 2, 2]

y = [17.3, 24.1, 26.3]

gp = [5, 3]

hp = TRANSPOSE([[0, 1, 0], [0, 0, 1]])

x = REGRESSORS(z, n_class, n_cont)

size_x = SIZE(x)

nreg = size_x(2)

coefs = MULTIREGRESS(x, y, Predict_Info = info_v)

% MULTIREGRESS: Warning: STAT_RANK_DEFICIENT

 The model is not full rank. There is not a unique least

 squares solution. The rank of the matrix of regressors is
2.

nh = HYPOTH_PARTIAL(info_v, hp, Gp = gp, $

 G_Matrix = g_matrix, H_Matrix =
h_matrix, $

 Rank_Hp = rank_hp)

IF (nh EQ 0) THEN PRINT, "Nontestable Hypothesis" $

 ELSE IF (nh LT rank_hp) THEN $

 PRINT, "Partially Testable Hypothesis" $

 ELSE PRINT, "Completely Testable Hypothesis"

Partially Testable Hypothesis

PM, h_matrix, title = "H Matrix"

H Matrix

 0.00000 0.707107 -0.707107

PM, g_matrix, title = "G"

G

 1.41421

Warning Errors

STAT_HYP_NOT_CONSISTENT — The hypothesis is inconsistent within the
computed tolerance.

HYPOTH_SCPH Function 147

HYPOTH_SCPH Function
Computes the matrix of sums of squares and crossproducts for the multivariate
general linear hypothesis HβU = G given the regression fit.

Usage

result = HYPOTH_SCPH(info_v, h)

Input Parameters

info_v — One-dimensional array of type BYTE containing information about
the regression fit. See function MULTIREGRESS.

h — Two-dimensional array of size nh by n_coefficients with each row corre-
sponding to a row in the hypothesis and containing the constants that specify a
linear combination of the regression coefficients. Here, n_coefficients is the
number of coefficients in the fitted regression model.

Returned Value

result — Two-dimensional array, scph, containing the sums of squares and
crossproducts attributable to the hypothesis.

Input Keywords

Double — If present and nonzero, double precision is used.

G — Two-dimensional array of size nh by nu containing the G matrix, the null
hypothesis values. By default, each value of G is equal to 0.

U — Two-dimensional array of size n_dependent by nu containing the U matrix
for the test HpβU = Gp where nu is the number of linear combinations of the
dependent variables to be considered. The value nu must be greater than 0 and
less than or equal to n_dependent.

Default: nu = n_dependent and U is the identity matrix

Output Keywords

Dfh — Named variable into which the degrees of freedom for the sums of
squares and crossproducts matrix is stored. This is equal to the rank of input
matrix h.

148 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Discussion

Function HYPOTH_SCPH computes the matrix of sums of squares and
crossproducts for the general linear hypothesis HβU = G for the multivariate
general linear model Y = Xβ + ε.

The rows of H must be linear combinations of the rows of R, i.e., Hβ = G must
be completely testable. If the hypothesis is not completely testable, function
HYPOTH_PARTIAL (page 141) can be used to construct an equivalent com-
pletely testable hypothesis.

Computations are based on an algorithm discussed by Kennedy and Gentle
(1980, p. 317) that is extended by Sallas and Lionti (1988) for mulitvariate non-
full rank models with possible linear equality restrictions. The algorithm is as
follows:

1. Form

2. Find C as the solution of RTC = HT. If the equations are declared inconsis-
tent within a computed tolerance, a warning error message is issued that the
hypothesis is not completely testable.

3. For all rows of R corresponding to restrictions, i.e., containing negative
diagonal elements from a restricted least-squares fit, zero out the corre-
sponding rows of C, i.e., from DC.

4. Decompose DC using Householder transformations and column pivoting to
yield a square, upper triangular matrix T with diagonal elements of nonin-
creasing magnitude and permutation matrix P such that

where Q is an orthogonal matrix.

5. Determine the rank of T, say r. If t11 = 0, then r = 0. Otherwise, the rank of
T is r if

W H U G= −$β

DCP Q
T

=
�
��

�
��0

HYPOTH_SCPH Function 149

| trr | > | t11 | ε 1 | tr + 1, r + 1 |

where ε = 10.0 * (machine epsilon)

Then, zero out all rows of T below r. Set the degrees of freedom for the
hypothesis, Dfh, to r.

6. Find V as a solution to TTV = PTW. If the equations are inconsistent, a warn-
ing error message is issued that the hypothesis is inconsistent within a
computed tolerance, i.e., the linear system

HβU = G

Ab = Z

does not have a solution for β.

Form VTV, which is the required matrix of sum of squares and crossprod-
ucts, scph.

In general, the two warning errors described above are serious user errors
that require the user to correct the hypothesis before any meaningful sums
of squares from this function can be computed. However, in some cases, the
user may know the hypothesis is consistent and completely testable, but the
checks in HYPOTH_SCPH are too tight. For this reason, HYPOTH_SCPH
continues with the calculations.

Function HYPOTH_SCPH gives a matrix of sums of squares and
crossproducts that could also be obtained from separate fittings of the two
models:

Y≠ = Xβ≠ + ε≠ (1)

Aβ≠ = Z≠

Hβ≠ = G

and

Y≠ = Xβ≠ + ε≠ (2)

Aβ = Z≠

where Y≠ = YU, β≠ = βU, ε≠ = εU, and Z≠ = ZU. The error sum of squares
and crossproducts matrix for (1) minus that for (2) is the matrix sum of

150 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

squares and crossproducts output in scph. Note that this approach avoids the
question of testability.

Example

The data for this example are from Maindonald (1984, pp. 203204). A multi-
variate regression model containing two dependent variables and three
independent variables is fit using function MULTIREGRESS and the results
stored in the structure info_v. The sum of squares and crossproducts matrix,
scph, is then computed by calling HYPOTH_SCPH for the test that the third
independent variable is in the model (determined by the specification of h). The
degrees of freedom for scph also is computed.

x = TRANSPOSE([[7.0, 5.0, 6.0], $

 [2.0, -1.0, 6.0], $

 [7.0, 3.0, 5.0], $

 [-3.0, 1.0, 4.0], $

 [2.0, -1.0, 0.0], $

 [2.0, 1.0, 7.0], $

 [-3.0, -1.0, 3.0], $

 [2.0, 1.0, 1.0], $

 [2.0, 1.0, 4.0]])

y = TRANSPOSE([[7.0, 1.0], $

 [-5.0, 4.0], $

 [6.0, 10.0], $

 [5.0, 5.0], $

 [5.0, -2.0], $

 [-2.0, 4.0], $

 [0.0, -6.0], $

 [8.0, 2.0], $

 [3.0, 0.0]])

h = FLTARR(1, 4)

h(*) = 0

h(0, 3) = 1.0

coefs = MULTIREGRESS(x, y, Predict_Info = p)

scph = HYPOTH_SCPH(p, h, Dfh = dfh)

PRINT, "Degrees of Freedom Hypothesis =", dfh

Degrees of Freedom Hypothesis = 1.00000

PM, scph, Title = ’Sum of Squares and Crossproducts’

Sum of Squares and Crossproducts

HYPOTH_TEST Function 151

 100.000 -40.0000

 -40.0000 16.0000

Warning Errors

STAT_HYP_NOT_TESTABLE — The hypothesis is not completely testable
within the computed tolerance. Each row of “h” must be a linear combination of
the rows of “r”.

STAT_HYP_NOT_CONSISTENT — The hypothesis is inconsistent within the
computed tolerance.

HYPOTH_TEST Function
Performs tests for a multivariate general linear hypothesis HβU = G given the
hypothesis sums of squares and crossproducts matrix SH.

Usage

result = HYPOTH_TEST(info_v, dfh, scph)

Input Parameters

info_v — One-dimensional array of type BYTE containing information about
the regression fit. See function MULTIREGRESS.

dfh — Degrees of freedom for the sums of squares and crossproducts matrix.

scph — Two-dimensional array of size nu by nu containing SH, the sums of
squares and crossproducts attributable to the hypothesis.

Returned Value

result — The p-value corresponding to Wilks’ lambda test.

Input Keywords

Double — If present and nonzero, double precision is used.

U — Two-dimensional array of size n_dependent by nu containing the U matrix
for the test HpβU = Gp where nu is the number of linear combinations of the

152 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

dependent variables to be considered. The value nu must be greater than 0 and
less than or equal to n_dependent.

Default: nu = n_dependent and U is the identity matrix

Output Keywords

Wilk_Lambda — Named variable into which the one-dimensional array con-
taining the Wilk’s lamda and p-value is stored.

Roy_Max_Root — Named variable into which the one-dimensional array con-
taining the Roy’s maximum root criterion and p-value is stored.

Hotelling_Trace — Named variable into which the one-dimensional array con-
taining the Hotelling’s trace and p-value is stored.

Pillai_Trace — Named variable into which the one-dimensional array contain-
ing the Pillai’s trace and p-value is stored.

Discussion

Function HYPOTH_TEST computes test statistics and p-values for the general
linear hypothesis HβU = G for the multivariate general linear model.

The hypothesis sum of squares and crossproducts matrix input in scph is

where C is a solution to RTC = H and where D is a diagonal matrix with diago-
nal elements

See the section “Linear Dependence and the R Matrix” in the introduction of
Chapter 2, Regression (page 56).

S H U G C DC H U GH

T
T= − −

−
$ $β β	
 � � 	

dii
ii=

>��
1 0

0

if r

otherwise

HYPOTH_TEST Function 153

The error sum of squares and crossproducts matrix for the model Y = Xβ + ε is

which is input in MULTIREGRESS. The error sum of squares and crossprod-
ucts matrix for the hypothesis HβU = G computed by HYPOTH_TEST is

Let p equal the order of the matrices SE and SH, i.e.,

Let q (stored in dfh) be the degrees of freedom for the hypothesis. Let v (input
in info_v) be the degrees of freedom for error. Function HYPOTH_TEST com-
puted three test statistics based on eigenvalues λi (i = 1, 2, … p) of the
generalized eigenvalue problem SHx = λSEx. These test statistics are as follows:

Wilk’s lambda

Y X Y X
T

− −$ $β β	
 	

S U Y X Y X UE
T

T
= − −$ $β β	
 	

p =
>��

���
NU NU

NDEP

if

otherwise

0

Λ =
+

=
+=

∏
det

det

S

S S
E

H E ii

p� �
� �

1

11 λ

154 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

The associated p-value is based on an approximation discussed by Rao (1973, p.
556). The statistic

has an approximate F distribution with pq and ms – pq / 2 + 1 numerator and
denominator degrees of freedom, respectively, where

and

The F test is exact if min (p, q) ≤ 2 (Kshirsagar, 1972, Theorem 4, p. 2994300).

Roy’s maximum root

c = max λi over all i

where c is output as value = Roy_Max_Root(0). The p-value is based on the
approximation

F
ms pq

pq

s

s= − + −/ /

/

2 1 1 1

1

Λ
Λ

s p q

p q

=

= =

−
+ −

�
��

�

1 1 1

4

5

2 2

2 2

if p or q

otherwise

m
p q

= −
+ −

υ
1

2

� �

F
q s

s
c= + −υ

HYPOTH_TEST Function 155

where s = max (p, q) has an approximate F distribution with s and υ + q − s
numerator and denominator degrees of freedom, respectively. The F test is exact
if s = 1; the p-value is also exact. In general, the value output in
p_value = Roy_Max_Root(1) is lower bound on the actual p-value.

Hotelling’s trace

U is output as value = Hotelling_Trace(0). The p-value is based on the approxi-
mation of McKeon (1974) that supersedes the approximation of Hughes and
Saw (1972). McKeon’s approximation is also discussed by Seber (1984, p. 39).
For

the p-value is based on the result that

has an approximate F distribution with pq and b degrees of freedom. The test is
exact if min (p, q) = 1. For υ ≤ p + 1, the approximation is not valid, and
p_value = Hotelling_Trace(1) is set to NaN.

These three test statistics are valid when SE is positive definite. A necessary
condition for SE to be positive definite is υ ≥ p. If SE is not positive definite, a
warning error message is issued, and both value and p_value are set to NaN.

Because the requirement υ ≥ p can be a serious drawback, HYPOTH_TEST
computes a fourth test statistic based on eigenvalues θi (i = 1, 2, …, p) of the
generalized eigenvalue problem SHw = θ(SH + SE) w. This test statistic requires

U HE i
i

p
= =−

=
∑tr 1

1
� � λ

b
pq

q p

p p

= + +
+ − − −

− − −

4
2
1 1

3

υ υ
υ υ

� �� �
� �� �

F
b p

b pq
U=

− −
−

υ 1

2

� �
� �

156 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

a less restrictive assumption—SH + SE is positive definite. A necessary condi-
tion for SH + SE to be positive definite is υ + q ≥ p. If SE is positive definite,
HYPOTH_TEST avoids the computation of the generalized eigenvalue prob-
lem from scratch. In this case, the eigenvalues θi are obtained from λi by

The fourth test statistic is as follows:

Pillai’s trace

V is output as value = Pillai_Trace(0). The p-value is based on an approxima-
tion discussed by Pillai (1985). The statistic

has an approximate F distribution with s(2m + s + 1) and s(2n + s + 1) numera-
tor and denominator degrees of freedom, respectively, where

s = min (p, q)

m = 1/2(|p - q| -1)

n = 1/2(υ - p - 1)

The F test is exact if min (p, q) = 1.

Example 1

The data for this example are from Maindonald (1984, p. 20310204). A multi-
variate regression model containing two dependent variables and three

θ λ
λi
i

i

=
+1

V S S SH H E i
i

p
= + =−

=
∑tr � � 1

1
θ

F
n s

m s

V

s V
= + +

+ + −
2 1

2 1

HYPOTH_TEST Function 157

independent variables is fit using function MULTIREGRESS and the results
stored in info_v. The sum of squares and crossproducts matrix, scph, is then
computed using HYPOYH_SCPH for the test that the third independent vari-
able is in the model (determined by specification of h). Finally, function
HYPOTH_TEST is used to compute the p-value for the test statistic (Wilk’s
lambda).

x = TRANSPOSE([[7.0, 5.0, 6.0], $

 [2.0, -1.0, 6.0], $

 [7.0, 3.0, 5.0], $

 [-3.0, 1.0, 4.0], $

 [2.0, -1.0, 0.0], $

 [2.0, 1.0, 7.0], $

 [-3.0, -1.0, 3.0], $

 [2.0, 1.0, 1.0], $

 [2.0, 1.0, 4.0]])

y = TRANSPOSE([[7.0, 1.0], $

 [-5.0, 4.0], $

 [6.0, 10.0], $

 [5.0, 5.0], $

 [5.0, -2.0], $

 [-2.0, 4.0], $

 [0.0, -6.0], $

 [8.0, 2.0], $

 [3.0, 0.0]])

h = FLTARR(1, 4)

h(*) = 0

h(0, 3) = 1.0

coefs = MULTIREGRESS(x, y, Predict_Info = p)

scph = HYPOTH_SCPH(p, h, Dfh = dfh)

pvalue = HYPOTH_TEST(p, dfh, scph)

PM, pvalue, format = "(F10.6)", Title = ’P-value’

P-value

 0.000010

Example 2

This example is the same as the first example, but more statistics are com-
puted. Also, the U matrix, U, is explicitly specified as the identity matrix
(which is the same default configuration of U).

158 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

x = TRANSPOSE([[7.0, 5.0, 6.0], $

 [2.0, -1.0, 6.0], $

 [7.0, 3.0, 5.0], $

 [-3.0, 1.0, 4.0], $

 [2.0, -1.0, 0.0], $

 [2.0, 1.0, 7.0], $

 [-3.0, -1.0, 3.0], $

 [2.0, 1.0, 1.0], $

 [2.0, 1.0, 4.0]])

y = TRANSPOSE([[7.0, 1.0], $

 [-5.0, 4.0], $

 [6.0, 10.0], $

 [5.0, 5.0], $

 [5.0, -2.0], $

 [-2.0, 4.0], $

 [0.0, -6.0], $

 [8.0, 2.0], $

 [3.0, 0.0]])

h = FLTARR(1, 4)

h(*) = 0

h(0, 3) = 1.0

u = [[1, 0], [0, 1]]

coefs = MULTIREGRESS(x, y, Predict_Info = p)

scph = HYPOTH_SCPH(p, h, Dfh = dfh)

pvalue = HYPOTH_TEST(p, dfh, scph, U = u, $

 Wilk_Lambda = wilk_lambda, $

 Roy_Max_Root = roy_max_root, $

 Hotelling_Trace = hotelling_trace, $

 Pillai_Trace = pillai_trace)

PRINT, "Wilk value = ", wilk_lambda(0), " p-value =", $

 wilk_lambda(1)

Wilk value = 0.00314861 p-value = 9.89437e-06

PRINT, "Roy value = ", roy_max_root(0), " p-value =", $

 roy_max_root(1)

Roy value = 316.601 p-value = 9.89437e-06

PRINT, "Hotelling value = ", hotelling_trace(0), " p-value =",
$

 hotelling_trace(1)

HYPOTH_TEST Function 159

Hotelling value = 316.601 p-value = 9.89437e-06

PRINT, "Pillai value = ", pillai_trace(0), " p-value =", $

 pillai_trace(1)

Pillai value = 0.996851 p-value = 9.89437e-06

Warning Errors

STAT_SINGULAR_1 — “u”*“scpe”*“u” is singular. Only Pillai’s trace can be
computed. Other statistics are set to NaN.

Fatal Errors

STAT_NO_STAT_1 — “scpe” + “scph” is singular. No tests can be computed.

STAT_NO_STAT_2 — No statistics can be computed. Iterations for eigenval-
ues for the generalized eigenvalue problem “scph”*x =
(lambda)*(“scph”+“scpe”)*x failed to converge.

STAT_NO_STAT_3 — No statistics can be computed. Iterations for eigenval-
ues for the generalized eigenvalue problem “scph”*x =
(lambda)*(“scph”+“u”*“scpe”*“u”)*x failed to converge.

STAT_SINGULAR_2 — “u”*“scpe”*“u” + “scph” is singular. No tests can be
computed.

STAT_SINGULAR_TRI_MATRIX — The input triangular matrix is singular.
The index of the first zero diagonal element is equal to #.

160 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

NONLINOPT Function
Fits data to a nonlinear model (possibly with linear constraints) using the suc-
cessive quadratic programming algorithm (applied to the sum of squared errors,
sse = ∑(yi − f(xi; θ))2) and either a finite difference gradient or a user-supplied
gradient.

Usage

result = NONLINOPT(f, n_parameters, x, y)

Input Parameters

f — Scalar string specifying a user-supplied function that defines the nonlinear
regression problem at a given point. Function f has the following parameters:

xi — One-dimensional array of length n_independent at which point the
function is evaluated.

theta — One-dimensional array of length n_parameters containing the
current values of the regression coefficients.

Function f returns a predicted value at the point xi. In the following,
f(xi; θ), or just fi, denotes the value of this function at the point xi, for a
given value of θ. (Both xi and θ are arrays.).

n_parameters — Number of parameters to be estimated.

x — Two-dimensional array of size n_observations by n_independent contain-
ing the matrix of independent (explanatory) variables where n_observations is
the number of observations and n_independent is the number of independent
variables.

y — One-dimensional array of length n_observations containing the dependent
(response) variable.

Returned Value

result — One-dimensional array of length n_parameters containing a solution,

$θ

NONLINOPT Function 161

for the nonlinear regression coefficients.

Input Keywords

Double — If present and nonzero, double precision is used.

Theta_Guess — One-dimensional array with n_parameters components con-
taining an initial guess.

Default: Theta_Guess(*) = 0

Jacobian — Scalar string specifying a user-supplied function to compute the i-
th row of the Jacobian. The function specified by Jacobian has the following
parameters:

Xi — One-dimensional array containing the n_independent data values
corresponding to the i-th row. (Input)

Theta — One-dimensional array of length n_parameters containing the
regression coefficients for which the Jacobian is evaluated. (Input)

The return value of this function is a one-dimensional array containing
the computed n_parameters row of the Jacobian for observation i at
Theta. Note that each derivative f(xi)/q should be returned in element
(j - 1) of the returned array for j = 1, 2, ..., n_parameters. Further note
that in order to maintain consistency with the other nonlinear solver,
NONLINREGRESS, the Jacobian values must be specified as the nega-
tive of the calculated derivatives.

Xlb — One-dimensional array of length n_parameters containing the lower
bounds on the parameters; choose a very large negative value if a component
should be unbounded below or set Xlb(i) = Xub(i) to freeze the i-th variable.

Default: All parameters are bounded below by -106.

Xub — One-dimensional array of length n_parameters containing the upper
bounds on the parameters; choose a very large value if a component should be
unbounded above or set Xlb(i) = Xub(i) to freeze the i-th variable.

Default: All parameters are bounded above by 106.

A_Matrix — Two-dimensional array of size n_constraints by n_parameters
containing the equality constraint gradients in the first Meq rows, followed by
the inequality constraint gradients. Here n_constraints is the total number of
linear constraints (excluding simple bounds). Keywords A_Matrix and B must
be used together.

162 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Default: There are no default linear contraints.

B — One-dimensional array of length n_constraints containing the right-hand
sides of the linear constraints. Keywords A_Matrix and B must be used together.

Default: There are no default linear constraints.

A_Matrix and B are the linear constraints, specifically, the contraints on θ are:
ai1 θ1 + ... + aij θj = bi for i = 1, n_equality and j = 1, n_parameter, and

ak1 θ1 + ... + akj θj ≤ bk for k = n_equality + 1, n_constraints and j = 1,
n_parameter.

Meq — Number of the A_Matrix constraints which are equality constraints; the
remaining (n_constraints –Meq) constraints are inequality constraints.

Default: Meq = 0.

Frequencies — One-dimensional array of length n_observations containing the
frequency for each observation.

Default: Frequencies(*) = 1

Weights — One-dimensional array of length n_observations containing the
weight for each observation.

Default: Weights(*) = 1

Acc — The nonnegative tolerance on the first order conditions at the calculated
solution.

Max_Sse_Evals — The maximum number of sse evaluations allowed.

Default: Max_Sse_Eval = 400

Output Keywords

Stop_Info — Named variable into which one of the following integer values to
indicate the reason for leaving the routine is stored:

Stop_info Reason for leaving routine

1 θ ιs feasible, and the condition that depends on Acc is satisfied.

2 θ is feasible, and rounding errors are preventing further progress.

3 θ is feasible, but sse fails to decrease although a decrease is pre-
dicted by the current gradient vector.

NONLINOPT Function 163

Num_Active — Named variable into which the final number of active con-
straints is stored.

Active_Const — Named variable into which a one-dimensional array of length
Num_Active containing the indices of the final active constraints is stored.

Lagrange_Mult — Named variable into which a one-dimensional array of
length Num_Active containing the Lagrange multiplier estimates of the final
active constraints is stored.

Predicted — Named variable into which a one-dimensional array of length
n_observations containing the predicted values at the approximate solution is
stored.

Residual — Named variable into which a one-dimensional array of length
n_observations containing the residuals at the approximate solution is stored.

Sse — Named variable into which the residual sum of squares is stored.

Discussion

Function NONLINOPT is based on M.J.D. Powell’s TOLMIN, which solves
linearly constrained optimiation problems, i.e., problems of the form min f(θ), θ
∈ ℜ, subject to

A1θ = b1

4 The calculation cannot begin because A_Matrix contains fewer
than n_constraints constraints or because the lower bound on a
variable is greater than the upper bound.

5 The equality constraints are inconsistent. These constraints
include any components of

that are frozen by setting Xlb(i) equal to Xub(i).
6 The equality constraints and the bound on the variables are

found to be inconsistent.

7 There is no possible 1 that satisfies all of the constraints.

8 Maximum number of sse evaluations (Max_Sse_Eval) is
exceeded.

9 θ is determined by the equality constraints.

Stop_info Reason for leaving routine

$θ

164 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

A2θ ≤ b2

θI ≤ θ ≤ θu

given the vectors b1, b2, θI, and θu and the matrices A1 and A2.

The algorithm starts by checking the equality constraints for inconsistency and
redundancy. If the equality constraints are consistent, the method will revise θ0,
the initial guess provided by the user, to satisfy

A1θ = b1

Next, θ0 is adjusted to satisfy the simple bounds and inequality constraints. This
is done by solving a sequence of quadratic programming subproblems to mini-
mize the sum of the constraint or bound violations.

Now, for each iteration with a feasible θk, let Jk be the set of indices of inequal-
ity constraints that have small residuals. Here, the simple bounds are treated as
inequality constraints. Let Ik be the set of indices of active constraints. The fol-
lowing quadratic programming problem

subject to

ajd = 0 j ∈ Ik

ajd ≤ 0 j ∈ Jk

is solved to get (dk, λk) where aj is a row vector representing either a constraint
in A1 or A2 or a bound constraint on θ. In the latter case, the aj = ei for the
bound constraint θi ≤ (θu)i and aj = ei for the constraint θi ≤ (θl)i. Here, ei is a
vector with a 1 as the i-th component, and zeroes elsewhere. λk are the
Lagrange multipliers, and Bk is a positive definite approximation to the second
derivative ∇2 f(θk).

After the search direction dk is obtained, a line search is performed to locate a
better point. The new point θk+1 = θk + αkdk has to satisfy the conditions

f (θk + αkdk) ≤ f (θk) + 0.1αk (dk)T ∇f (θk)

and

(dk)T∇ f (θk + αkdk) ≥ 0.7 (dk)T∇ f (θk)

min f d f d B dk T k T kθ θ� � � �+ ∇ + 1

2

NONLINOPT Function 165

The main idea in forming the set Jk is that, if any of the inequality constraints
restricts the step-length αk, then its index is not in Jk. Therefore, small steps are
likely to be avoided.

Finally, the second derivative approximation, Bk, is updated by the BFGS formula,
if the condition

(dk)T∇ f (θk + αkdk) − ∇ f (θk) > 0

holds. Let θk ← θk+1, and start another iteration.

The iteration repeats until the stopping criterion

||∇ f (θk) − Akλk||2 ≤ τ

is satisfied; here, τ is a user-supplied tolerance. For more details, see Powell
(1988, 1989).

Since a finite-difference method is used to estimate the gradient, for some sin-
gle precision calculations. An inaccurate estimate of the gradient may cause the
algorithm to terminate at a noncritical point. In such cases, high precision arith-
metic is recommended. Also, whenever the exact gradient can be easily
provided, the gradient should be passed to NONLINOPT using the optional key-
word Jacobian.

Example 1

In this example, a data set is fitted to the nonlinear model function

FUNCTION fcn, x, theta

 res = SIN(theta(0)*x(0))

 RETURN, res

END

x = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

y = [0.05, 0.21, 0.67, 0.72, 0.98, 0.94, $

 1.00, 0.73, 0.44, 0.36, 0.02]

n_parameters = 1

y xi i i= +sin θ ε0� �

166 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

theta_hat = NONLINOPT("fcn", n_parameters, x, y)

% NONLINOPT: Note: STAT_NOTE_3

"theta" is feasible but the objective function fails to

decrease. Using double precision may help.

PRINT, "Theta Hat = ", theta_hat

Theta Hat = 3.16143

Example 2

Draper and Smith (1981, p. 475) state a problem due to Smith and Dubey. [H.
Smith and S. D. Dubey (1964), "Some reliability problems in the chemical
industry", Industrial Quality Control, 21 (2), 1964, pp. 641470] A certain prod-
uct must have 50% available chlorine at the time of manufacture. When it
reaches the customer 8 weeks later, the level of available chlorine has dropped
to 49%. It was known that the level should stabilize at about 30%. To predict
how long the chemical would last at the customer site, samples were analyzed
at different times. It was postulated that the following nonlinear model should
fit the data.

Since the chlorine level will stabilize at about 30%, the initial guess for theta1
is 0.30. Using the last data point (x = 42, y = 0.39) and θ0 = 0.30 and the above
nonlinear equation, an estimate for θ1of 0.02 is obtained.

The constraints that θ0 ≥ 0 and θ1 ≥ 0 are also imposed. These are equivalent to
requiring that the level of available chlorine always be positive and never
increase with time.

The Jacobian of the nonlinear model equation is also used.

FUNCTION fcn, x, theta

 res = theta(0) + (0.49 - theta(0))* $

 exp(-theta(1)*(x(0) - 8.0))

 RETURN, res

END

FUNCTION jacobian, x, theta

 fjac = theta

 fjac(*) = 0

y ei
xi

i= + − +− −θ θ εθ
0

80 49.� � 1 6

NONLINOPT Function 167

 fjac(0) = -1.0 + exp(-theta(1)*(x(0) - 8.0));

 fjac(1) = (0.49 - theta(0))*(x(0) - 8.0) * $

 exp(-theta(1)*(x(0) - 8.0));

 RETURN, fjac

END

x = [8.0, 8.0, 10.0, 10.0, 10.0, 10.0, 12.0, 12.0, 12.0, $

 12.0, 14.0, 14.0, 14.0, 16.0, 16.0, 16.0, 18.0, 18.0, $

 20.0, 20.0, 20.0, 22.0, 22.0, 22.0, 24.0, 24.0, 24.0, $

 26.0, 26.0, 26.0, 28.0, 28.0, 30.0, 30.0, 30.0, 32.0, $

 32.0, 34.0, 36.0, 36.0, 38.0, 38.0, 40.0, 42.0]

y = [0.49, 0.49, 0.48, 0.47, 0.48, 0.47, 0.46, 0.46, 0.45, $

 0.43, 0.45, 0.43, 0.43, 0.44, 0.43, 0.43, 0.46, 0.45, $

 0.42, 0.42, 0.43, 0.41, 0.41, 0.40, 0.42, 0.40, 0.40, $

 0.41, 0.40, 0.41, 0.41, 0.40, 0.40, 0.40, 0.38, 0.41, $

 0.40, 0.40, 0.41, 0.38, 0.40, 0.40, 0.39, 0.39]

theta_guess = [0.3, 0.02]

xlb = [0.0, 0.0]

n_parameters = 2

theta_hat = NONLINOPT("fcn", n_parameters, x, y, $

 Theta_Guess = theta_guess, Xlb =
xlb, $

 Jacobian = "jacobian", Sse = sse)

% NONLINOPT: Note: STAT_NOTE_3

"theta" is feasible but the objective function fails to

decrease. Using double precision may help.

PRINT, "Theta Hat =", theta_hat

Theta Hat = 0.390143 0.101631

PRINT, "Residual Sum of Squares =", sse

Residual Sum of Squares = 0.00500168

Fatal Errors

STAT_BAD_CONSTRAINTS_1 — The equality constraints are inconsistent.

STAT_BAD_CONSTRAINTS_2 — The equality constraints and the bounds on
the variables are found to be inconsistent.

168 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

STAT_BAD_CONSTRAINTS_3 — No vector “theta” satisfies all of the con-
straints. Specifically, the current active constraints prevent any change in “theta”
that reduces the sum of constraint violations.

STAT_BAD_CONSTRAINTS_4 — The variables are determined by the equal-
ity constraints.

STAT_TOO_MANY_ITERATIONS_1 — Number of function evaluations
exceeded “maxfcn” = #.

LNORMREGRESS Function 169

LNORMREGRESS Function
Fits a multiple linear regression model using criteria other than least squares.
Namely, LNORMREGRESS allows the user to choose Least Absolute Value
(L1), Least Lp norm (Lp), or Least Maximum Value (Minimax or Linfinity)
method of multiple linear regression.

Usage

result = LNORMREGRESS(x, y)

Input Parameters

x — Two-dimensional array of size n_rows by n_independent containing the
independent (explanatory) variables(s) where n_rows = N_ELEMENTS(x(*,0))
and n_independent is the number of independent (explanatory) variables. The i-
th column of x contains the i-th independent variable.

y — One-dimensional array of size n_rows containing the dependent (response)
variable.

Returned Value

result — One-dimensional array of length n_independent + 1 containing a least
absolute value solution for the regression coefficients. The estimated intercept
is the initial component of the array, where the i-th component contains the
regression coefficients for the i-th dependent variable. If the keyword
No_Intercept is used then the (i-1)-st component contains the regression coeffi-
cients for the i-th dependent variable. LNORMREGRESS returns the Lp norm
or least maximum value solution for the regression coefficients when appropri-
ately specified in the input keyword list.

Input Keywords

Double — If present and nonzero, double precision is used.

Lav — By default (or if Lav is used) the function fits a multiple linear regres-
sion model using the least absolute values criterion. Keywords Lav, Llp, and
Lmv can not be used together.

Llp — If present and nonzero, LNORMREGRESS fits a multiple linear regres-
sion model using the Lp norm criterion. Llp requires the keyword P, for P ≥ 1.
Keywords Lav, Llp, and Lmv can not be used together.

170 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

P — The p in the Lp norm criterion (see the Discussion section for details). P
must be greater than or equal to one. Keywords P and Llp must be used
together.

Lmv — If present and nonzero, LNORMREGRESS fits a multiple linear regres-
sion model using the minimax criterion. Keywords Lav, Llp, and Lmv can not
be used together.

Eps — Convergence criterion. If the maximum relative difference in residuals
from the k-th to (k+1)-st iterations is less than Eps, convergence is declared.
Keyword Llp is required when using keyword Eps.

Default: Eps = 100 * (machine epsilon).

Weights — One-dimensional array of size n_rows containing the weights for
the independent (explanatory) variable. Keyword Llp is required when using
keyword Weights.

Frequencies — One-dimensional array of size n_rows containing the frequen-
cies for the independent (explanatory) variable. Keyword Llp is required when
using keyword Frequencies.

No_Intercept — If present and nonzero, the intercept term

is omitted from the model and the Returned Value from regression is a one-
dimensional array of length n_independent. By default the fitted value for
observation i is

where k = n_independent.

Tolerance — Tolerance used in determining linear dependence. Keyword Llp is
required when using keyword Tolerance.

Default: Tolerance = 100 * (machine epsilon).

$β0	

$ $ $β β β0 1 1+ + +x xk kK

LNORMREGRESS Function 171

Output Keywords

Rank — Named variable into which the rank of the fitted model is stored.

Iters — Named variable into which the number of iterations performed is
stored.

Nmissing — Named variable into which the number of rows of data containing

NaN (not a number) for the dependent or independent variables is stored. If a
row of data contains NaN for any of these variables, that row is excluded from
the computations.

Sea — Named variable into which the sum of the absolute value of the errors is
stored. Keyword Lav is required when using keyword Sea.

Resid_Max — Named variable into which the magnitude of the largest residual
is stored. Keyword Lmv is required when using keyword Resid_Max.

R_Matrix — Named variable into which the two-dimensional array containing
the upper triangular matrix of dimension (number of coeffieciencts by number
of coeffecients) containing the R matrix from a QR decomposition of the matrix
of regressors is stored. Keyword Llp is required when using keyword R_Matrix.

Df — Named variable into which the sum of the frequencies minus Rank is
stored. In least squares fit (p=2) Df is called the degrees of freedom of error.
Keyword Llp is required when using keyword Df.

Residuals — Named variable into which the one-dimensional array (of length
equal to the number of observations) containing the residuals is stored.
Keyword Llp is required when using keyword Residuals.

Scale — Named variable into which the square of the scale constant used in an
Lp analysis is stored. An estimated asymptotic variance-covariance matrix of
the regression coefficients is Scale * (RTR)-1. Keyword Llp is required when
using keyword Scale.

Resid_Norm — Named variable into which the Lp norm of the residuals is
stored. Keyword Llp is required when using keyword Resid_Norm.

Discussion

Least Absolute Value Criterion

Function LNORMREGRESS computes estimates of the regression coefficients
in a multiple linear regression model. For keyword Lav (default), the criterion

172 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

satisfied is the minimization of the sum of the absolute values of the deviations
of the observed response yi from the fitted response

for a set on n observations. Under this criterion, known as the L1 or LAV (least
absolute value) criterion, the regression coefficient estimates minimize

The estimation problem can be posed as a linear programming problem. The
special nature of the problem, however, allows for considerable gains in effi-
ciency by the modification of the usual simplex algorithm for linear
programming. These modifications are described in detail by Barrodale and
Roberts (1973, 1974).

In many cases, the algorithm can be made faster by computing a least-squares
solution prior to the use of keyword Lav. This is particularly useful when a
least-squares solution has already been computed. The procedure is as follows:

1. Fit the model using least squares and compute the residuals from
this fit.

2. Fit the residuals from Step 1 on the regressor variables in the model using
keyword Lav.

3. Add the two estimated regression coefficient vectors from Steps 1 and 2.
The result is an L1 solution.

When multiple solutions exist for a given problem, option Lav may yield differ-
ent estimates of the regression coefficients on different computers, however, the
sum of the absolute values of the residuals should be the same (within round-
ing differences). The informational error indicating nonunique solutions may
result from rounding accumulation. Conversely, because of rounding the error
may fail to result even when the problem does have multiple solutions.

$yi

y yi i
i

n
−

=

−
∑ $

0

1

LNORMREGRESS Function 173

Lp Norm Criterion

Keyword Llp computes estimates of the regression coefficients in a multiple lin-
ear regression model y = Xβ + ε under the criterion of minimizing the Lp norm
of the deviations for i = 0, ... , n - 1 of the observed response yi from the fitted
response

for a set on n observations and for p ≥ 1. For the case when keywords Weights
and Frequencies are not supplied, the estimated regression coefficient vector,

(output in result) minimizes the Lp norm

The choice p = 1 yields the maximum likelihood estimate for β when the errors
have a Laplace distribution. The choice p = 2 is best for errors that are normally
distributed. Sposito (1989, pages 36−40) discusses other reasonable alternatives
for p based on the sample kurtosis of the errors.

Weights are useful if the errors in the model have known unequal variances

$yi

$β

y yi i
p

i

n p

−�� ��=

−
∑ $

/

0

1 1

σi
2

174 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

In this case, the weights should be taken as

Frequencies are useful if there are repetitions of some observations in the data
set. If a single row of data corresponds to ni observations, set the frequency fi = ni.
In general, keyword Llp minimizes the Lp norm

The asymptotic variance-covariance matrix of the estimated regression coeffi-
cients is given by

where R is from the QR decomposition of the matrix of regressors (output in
keyword R_Matrix) and where an estimate of λ2 is output in keyword Scale.

In the discussion that follows, we will first present the algorithm with frequen-
cies and weights all taken to be one. Later, we will present the modifications to
handle frequencies and weights different from one.

Keyword Llp uses Newton’s method with a line search for p > 1.25 and, for
p ≤ 1.25, uses a modification due to Ekblom (1973, 1987) in which a series of
perturbed problems are solved in order to guarantee convergence and increase
the convergence rate. The cutoff value of 1.25 as well as some of the other
implementation details given in the remaining discussion were investigated by
Sallas (1990) for their effect on CPU times.

wi i= 1 2/ σ

f w y yi
i

n

i i i

p p

=

−
∑ −�� ��0

1 1

$

/

� �

asy.var($) ()β λ= −2 1R RT

LNORMREGRESS Function 175

In each case, for the first iteration a least-squares solution for the regression
coefficients is computed using routine MULTIREGRESS (page 77). If p = 2,
the computations are finished. Otherwise, the residuals from the k-th iteration,

are used to compute the gradient and Hessian for the Newton step for the
(k + 1)-st iteration for minimizing the p-th power of the Lp norm. (The exponent
1/p in the Lp norm can be omitted during the iterations.)

For subsequent iterations, we first discuss the p > 1.25 case. For p > 1.25, the
gradient and Hessian at the (k + 1)-st iteration depend upon

and

In the case 1.25 < p < 2 and

and the Hessian are undefined; and we follow the recommendation of Merle and
Spath (1974). Specifically, we modify the definition of

e y yi
k

i i
k() ()

$= −

z e ei
k

i
k p

i
k() () ()+ −

=1 1
sign� �

v ei
k

i
k p() ()+ −

=1 2

e vi
k

i
k1 6 1 6= +0 1,

vi
k()+1

176 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

to the following:

where τ equals 100 * machine epsilon times the square root of the residual
mean square from the least-squares fit.

Let V(k+1) be a diagonal matrix with diagonal entries

and let z(k+1) be a vector with elements

In order to compute the step on the (k + 1)-st iteration, the R from the QR
decomposition of

[V(k+1)]1/2X

 is computed using fast Givens transformations. Let

R(k+1)

denote the upper triangular matrix from the QR decomposition. The linear
system

 [R(k+1)]TR(k+1)d(k+1)= XT z(k+1)

is solved for

d(k+1)

v
e

e
i

k

p
i

k

i
k

p
()+

−

−=
< <�

��
�

1

2

2

2τ τif p and

otherwise

1 6

1 6

vi
k()+1

zi
k()+1

LNORMREGRESS Function 177

where R(k+1) is from the QR decomposition of V(k+1)]1/2X . The step taken on the
(k + 1)-st iteration is

The first attempted step on the (k + 1)-st iteration is with α(k+1) = 1. If all of the

are nonzero, this is exactly the Newton step. See Kennedy and Gentle (1980,
pages 528−529) for further discussion.

If the first attempted step does not lead to a decrease of at least one-tenth of the
predicted decrease in the p-th power of the Lp norm of the residuals, a back-
tracking linesearch procedure is used. The backtracking procedure uses a one-
dimensional quadratic model to estimate the backtrack constant p. The value of
p is constrained to be no less that 0.1. An approximate upper bound for p is 0.5.
If after 10 successive backtrack attempts, α(k) = p1p2... p10 does not produce a
step with a sufficient decrease, then LNORMREGRESS issues a message with
error code 5. For further details on the backtrack line-search procedure, see
Dennis and Schnabel (1983, pages 126−127).

Convergence is declared when the maximum relative change in the residuals
from one iteration to the next is less than or equal to Eps. The relative change

in the i-th residual from iteration k to iteration k + 1 is computed as follows:

$ $
() () () ()β β αk k k k

p
d+ + += + −

1 1 11
1

ei
k1 6

δi
k()+1

δi
k i

k
i

k

i
k

i
k

i
k

i
k

e e

e e e s
()

() ()

() () ()/ , ,)
+

+

+ +=
= =

−
�
��
�

1
1

1 1

0 0if

max(e otherwise()

178 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

where s is the square root of the residual mean square from the least-squares fit
on the first iteration.

For the case 1 ≤ p ≤ 1.25, we describe the modifications to the previous proce-
dure that incorporate Ekblom’s (1973) results. A sequence of perturbed
problems are solved with a successively smaller perturbation constant c. On the
first iteration, the least-squares problem is solved. This corresponds to an infi-
nite c. For the second problem, c is taken equal to s, the square root of the
residual mean square from the least-squares fit. Then, for the (j + 1)-st prob-
lem, the value of c is computed from the previous value of c according to

Each problem is stated as

For each problem, the gradient and Hessian on the (k + 1)-st iteration depend
upon

and

c cj j
p

+
−=1

5 410/

Minimize () /e ci
p

i

n 2 2 2

0

1
+

=

−
∑

z e ri
k

i
k

i
k() () ()+ =1

v
p e

e c
ri

k i
k

i
k i

k()
()

()
()()()

()
+ = + −

+
�
��

�
��

1
2

2 2
1

2

LNORMREGRESS Function 179

where

The linear system [R(k+1)]TR(k+1)d(k+1)= XTz(k+1) is solved for d(k+1) where R(k+1) is
from the QR decomposition of [V(k+1)]1/2X. The step taken on the (k + 1)-st iter-
ation is

where the first attempted step is with α(k+1)= 1. If necessary, the backtracking
line-search procedure discussed earlier is used.

Convergence for each problem is relaxed somewhat by using a convergence
epsilon equal to max(Eps, 10-j) where j = 1, 2, 3, ... indexes the problems
(j = 0 corresponds to the least-squares problem).

After the convergence of a problem for a particular c, Ekblom’s (1987) extrapo-
lation technique is used to compute the initial estimate of β for the new
problem. Let R(k),

and c be from the last iteration of the last problem. Let

r e ci
k

i
k p() () ()/

()= +
−2 2 2 2

$ $() () () ()β β αk k k kd+ + += +1 1 1

v ei
k

i
k() , 1 6

t
p v

e c
i

i
k

i
k= −

+
()

()

()

()

2
2 2

180 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

and let t be the vector with elements ti. The initial estimate of β for the new
problem with perturbation constant 0.01c is

where ∆c = (0.01c - c) = -0.99c, and where d is the solution of the linear system
[R(k)]ΤR(k)d = XTt.

Convergence of the sequence of problems is declared when the maximum rela-
tive difference in residuals from the solution of successive problems is less than
Eps.

The preceding discussion was limited to the case for which Weights(*) = 1 and
Frequencies(*) = 1, i.e., the weights and frequencies are all taken equal to one.
The necessary modifications to the preceding algorithm to handle weights and
frequencies not all equal to one are as follows:

1. Replace

in the definitions of

and ti.

2. Replace

$ $
() ()β β0 = +k cd∆

e w ei
k

i i
k1 6 1 6 by

z vi
k

i
k

i
k() () (), ,+ + +1 1 1δ

z f w z v f w v t f w ti
k

i i i
k

i
k

i i i
k

i
k

i i i
k+ + + + + +1 1 1 1 1 11 6 1 6 1 6 1 6 by by and by , ,() ()

LNORMREGRESS Function 181

These replacements have the same effect as multiplying the i-th row of X and y
by

and repeating the row fi times except for the fact that the residuals returned by
LNORMREGRESS are in terms of the original y and X.

Finally, R and an estimate of λ2 are computed. Actually, R is recomputed
because on output it corresponds to the R from the initial QR decomposition for
least squares. The formula for the estimate of λ2 depends on p.

For p = 1, the estimator for λ2 is given by (McKean and Schrader 1987)

with

where z0.975 is the 97.5 percentile of the standard normal distribution, and where

are the ordered residuals where Rank zero residuals are excluded. Note that

wi

$

(~ ~)() ()

.

λ2 1

0 975

2

2
=

−�
�
��

�
�
��

− +DFE e e

z
k kDFE

k
k

z= + −DFE DFE

2 40 975.

~ (, , ,)()ε m m = 1 2K DFE

DFE irank== −−∑ fii
n

0
1

182 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

For p = 2, the estimator of λ2 is the customary least-squares estimator given by

For 1 < p < 2 and for p > 2, the estimator for λ2 is given by (Gonin and Money
1989)

with

Least Minimum Value Criterion (minimax)

Keyword Lmv computes estimates of the regression coefficients in a multiple
linear regression model. The criterion satisfied is the minimization of the maxi-
mum deviation of the observed response yi from the fitted response

for a set on n observations. Under this criterion, known as the minimax or LMV
(least maximum value) criterion, the regression coefficient estimates minimize

s
f w y y

f
i
n

i i i i

i
n

i

2 0
1 2

0
1= = −

−
=
−

=
−

∑

∑

SSE

DFE irank

($)

$

()
ω p

p

p

m

p m

2 2 2

2

2
1

=
−

−

−

m
f w y y

f
r

i
n

i i i i

i
n

i

r

=
−=

−

=
−

∑

∑
0
1

0
1

($)

$yi

max $

0 1≤ ≤ −
−

i n
i iy y

LNORMREGRESS Function 183

The estimation problem can be posed as a linear programming problem. A dual
simplex algorithm is appropriate, however, the special nature of the problem
allows for considerable gains in efficiency by modification of the dual simplex
iterations so as to move more rapidly toward the optimal solution. The modifi-
cations are described in detail by Barrodale and Phillips (1975).

When multiple solutions exist for a given problem, Lmv may yield different
estimates of the regression coefficients on different computers, however, the
largest residual in absolute value should have the same absolute value (within
rounding differences). The informational error indicating nonunique solutions
may result from rounding accumulation. Conversely, because of rounding, the
error may fail to result even when the problem does have multiple solutions.

Example 1

A straight line fit to a data set is computed under the LAV criterion.

PRO print_results, coefs, rank, sea, iters, nmissing

 PRINT, "B = ", coefs(0), coefs(1), $

 Format = "(A6, F5.2, 5X, F5.2)"

 PRINT

 PRINT, "Rank of Regressors Matrix = ", rank, $

 Format = "(A32, I3)"

 PRINT, "Sum Absolute Value of Error = ", sea, $

 Format = "(A32, F7.4)"

 PRINT, "Number of Iterations = ", iters, $

 Format = "(A32, I3)"

 PRINT, "Number of Rows Missing = ", nmissing, $

 Format = "(A32, I3)"

END

x = [1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0]

y = [1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0]

coefs = LNORMREGRESS(x, y, Nmissing = nmissing, $

 Rank = rank, Iters = iters, Sea =
sea)

print_results, coefs, rank, sea, iters, nmissing

B = 0.50 0.50

184 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Rank of Regressors Matrix = 2

Sum Absolute Value of Error = 6.0000

Number of Iterations = 2

Number of Rows Missing = 0

Example 2

Different straight line fits to a data set are computed under the criterion of mini-
mizing the Lp norm by using p equal to 1, 1.5, 2.0 and 2.5.

PRO print_results, coefs, residuals, p, resid_norm, rank, df, $

 iters, nmissing, scale, rm

 PRINT, "Coefficients ", coefs, Format = "(A13, 2F7.2)"

 PRINT, "Residuals ", residuals, Format = "(A10, 8F6.2)"

 PRINT

 PRINT, "p ", p, $

 Format = "(A33, F6.3)"

 PRINT, "Lp norm of the residuals ", resid_norm, $

 Format = "(A33, F6.3)"

 PRINT, "Rank of the matrix of regressors ", rank, $

 Format = "(A33, I6)"

 PRINT, "Degrees of freedom error ", df, $

 Format = "(A33, F6.3)"

 PRINT, "Number of iterations ", iters, $

 Format = "(A33, I6)"

 PRINT, "Number of missing values ", nmissing, $

 Format = "(A33, I6)"

 PRINT, "Square of the scale constant ", scale, $

 Format = "(A33, F6.3)"

 PRINT

 PM, rm, Format = "(2F8.3)", Title = " R matrix"

 PRINT

 PRINT, "--"

 PRINT

END

LNORMREGRESS Function 185

x = [1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0]

y = [1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0]

eps = 0.001

FOR i = 0, 3 DO BEGIN

 p = 1.0 + i*0.5

 coefs = LNORMREGRESS(x, y, /Llp, P = p, Eps = eps, $

 Nmissing = nmissing, Rank = rank,
$

 Iters = iters, Scale = scale, $

 Df = df, R_Matrix = rm, $

 Residuals = residuals, $

 Resid_Norm = resid_norm)

 print_results, coefs, residuals, p, resid_norm, rank, df, $

 iters, nmissing, scale, rm

ENDFOR

END

Coefficients 0.50 0.50

Residuals -0.00 2.50 -1.50 0.50 -0.50 0.50 -0.50 0.00

p 1.000

Lp norm of the residuals 6.002

Rank of the matrix of regressors 2

Degrees of freedom error 6.000

Number of iterations 8

Number of missing values 0

Square of the scale constant 6.248

 R matrix

 2.828 8.485

 0.000 3.464

--

Coefficients 0.39 0.56

Residuals 0.06 2.39 -1.50 0.50 -0.55 0.45 -0.61 -0.16

186 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

p 1.500

Lp norm of the residuals 3.712

Rank of the matrix of regressors 2

Degrees of freedom error 6.000

Number of iterations 6

Number of missing values 0

Square of the scale constant 1.059

 R matrix

 2.828 8.485

 0.000 3.464

--

Coefficients -0.12 0.75

Residuals 0.38 2.12 -1.38 0.62 -0.62 0.38 -0.88 -0.62

p 2.000

Lp norm of the residuals 2.937

Rank of the matrix of regressors 2

Degrees of freedom error 6.000

Number of iterations 1

Number of missing values 0

Square of the scale constant 1.438

 R matrix

 2.828 8.485

 0.000 3.464

--

Coefficients -0.44 0.87

Residuals 0.57 1.96 -1.30 0.70 -0.67 0.33 -1.04 -0.91

p 2.500

Lp norm of the residuals 2.540

LNORMREGRESS Function 187

Rank of the matrix of regressors 2

Degrees of freedom error 6.000

Number of iterations 4

Number of missing values 0

Square of the scale constant 0.789

 R matrix

 2.828 8.485

 0.000 3.464

Example 3

A straight line fit to a data set is computed under the LMV criterion.

PRO print_results, coefs, rank, rm, iters, nmissing

 PRINT, "B = ", coefs(0), coefs(1), $

 Format = "(A6, F5.2, 5X, F5.2)"

 PRINT

 PRINT, "Rank of Regressors Matrix = ", rank, $

 Format = "(A34, I3)"

 PRINT, "Magnitude of Largest Residual = ", rm, $

 Format = "(A34, F7.4)"

 PRINT, "Number of Iterations = ", iters, $

 Format = "(A34, I3)"

 PRINT, "Number of Rows Missing = ", nmissing, $

 Format = "(A34, I3)"

END

x = [0.0, 1.0, 2.0, 3.0, 4.0, 4.0, 5.0]

y = [0.0, 2.5, 2.5, 4.5, 4.5, 6.0, 5.0]

coefs = LNORMREGRESS(x, y, /Lmv, Nmissing = nmissing, $

 Rank = rank, Iters = iters, $

 Resid_Max = rm)

print_results, coefs, rank, rm, iters, nmissing

B = 1.00 1.00

Rank of Regressors Matrix = 2

Magnitude of Largest Residual = 1.0000

188 Chapter 2: Regression PV-WAVE:IMSL Statistics Reference

Number of Iterations = 3

Number of Rows Missing = 0

189

CHAPTER

3

Correlation and Covariance

Contents of Chapter

Variances, Covariances, and Correlations

Variance-covariance or
correlation matrixCOVARIANCES Function

Partial correlations and
covariances PARTIAL_COV Function

Pooled covariance matrix POOLED_COV Function

Robust estimate of
covariance matrix ROBUST_COV Function

Introduction
This chapter is concerned with measures of correlation for bivariate data as fol-
lows:

• The usual multivariate measures of correlation and covariance for continu-
ous random variables are produced by routine COVARIANCES.

• For data grouped by some auxiliary variable, routine POOLED_COV
can be used to compute the pooled covariance matrix along with the means
for each group.

• Partial correlations or covariances are computed by PARTIAL_COV.

190 Chapter 3: Correlation and Covariance PV-WAVE:IMSL Statistics Reference

• Function ROBUST_COV computes robust M-estimates of the mean and
covarianve matrix from a matrix of observations.

COVARIANCES Function
Computes the sample variance-covariance or correlation matrix.

Usage

result = COVARIANCES(x)

Input Parameters

x — Two-dimensional matrix containing the data. The data value for the i-th
observation of the j-th variable should be in x(i,j).

Returned Value

result — If no keywords are used, COVARIANCES returns a two-dimensional
matrix containing the sample variance-covariance matrix of the observations in
which value in element (i, j) corresponds to the sample covariance between the
i-th and j-th variable.

Input Keywords

Double — If present and nonzero, double precision is used.

Var_Covar or
Corrected_Sscp or
Correlation or
Stdev_Correlation — Exactly one of these options is used to specify the type of
matrix to be computed.

Keyword Type of Matrix

Var_Covar variance-covariance matrix (default)

Corrected_Sscp corrected sum-of-squares and crossproducts
matrix

Correlation correlation matrix

COVARIANCES Function 191

Weight — Array containing the vector of weights for the observation.

Default: all observations have equal weights of 1.

Frequencies — Array containing the vector of frequencies for the observation.

Default: all observations have a frequency of 1.

Missing_Val — Scalar integer which defines the method used to exclude miss-
ing values in x from the computations, where NaN is interpreted as the missing
value code.

The methods are as follows:

Output Keywords

Means — Named variable into which the array containing the means of the
variables in x is stored. The i-th components of the array correspond to x(*, i).

Stdev_Correlation correlation matrix, except for diagonal elements
which are standard deviations

Missing_Val Action

0 The exclusion is listwise. (The entire row of x is
excluded if any of the values of the row is equal to
the missing value code.)

1 Raw crossproducts are computed from all valid pairs
and means, and variances are computed from all valid
data on the individual variables. Corrected crossprod-
ucts, covariances, and correlations are computed
using these quantities.

2 Raw crossproducts, means, and variances are com-
puted as in the case of Missing_Val = 1. However,
corrected crossproducts and covariances are computed
only from the valid pairs of data. Correlations are
computed using these covariances and the variances
from all valid data.

3 Raw crossproducts, means, variances, and covari-
ances are computed as in the case of Missing_Val = 2.
Correlations are computed using these covariances,
but the variances used are computed from the valid
pairs of data.

Keyword Type of Matrix

192 Chapter 3: Correlation and Covariance PV-WAVE:IMSL Statistics Reference

Nmissing — Specifies a variable into which the total number of observations
that contain any missing values (NaN) is stored.

Incidence_Mat — Named variable into which the incidence matrix is stored. If
Missing_Val is 0, the number of valid observations is returned through this key-
word; otherwise, the nvar x nvar matrix, where nvar is the number of variables
in x, contains the number of pairs of valid observations used in calculating the
crossproducts for covariance.

Nobs — Named variable into which the sum of the frequencies is stored. If
Missing_Val is 0, observations with missing values are not included in Nobs;
otherwise, all observations are included except for observations with missing
values for the weight or the frequency.

Sum_weights — Specifies a variable into which the sum of the weights of all
observations is stored. If keyword Missing_val is equal to 0, observations with
missing values are not included in Sum_weights. Otherwise, all observations are
included except for observations with missing values for the weight or the
frequency.

Discussion

Function COVARIANCES computes estimates of correlations, covariances, or
sum of squares and crossproducts for a data matrix x. The means, (corrected)
sum of squares, and (corrected) sums of crossproducts are computed using the
method of provisional means.

Let

denote the mean based on i observations for the k-th variable, fi and wi denote
the frequency and weight of the i-th observation, respectively, and let cjki denote
the sum of crossproducts (or sum of squares if j = k) based on i observations.
Then, the method of provisional means finds new means and sums of
crossproducts shown in the example below.

The means and crossproducts are initialized as

xki

xk0 0.0= k 0 … p 1–, ,=

cjk0 0.0= j k, 0 … p 1–, ,=

COVARIANCES Function 193

where p denotes the number of variables. Letting xk, i + 1 denote the k-th vari-
able on observation i + 1, each new observation leads to the following updates
for

and cjki using update constant r i + 1:

Usage Notes

Function COVARIANCES uses the following definition of a sample mean:

where nr is the number of cases. The formula below defines the sample covari-
ance, sjk , between variables j and k.

The sample correlation between variables j and k, rjk , is defined below.

xki

ri 1+

fi 1+ wi 1+

fjwjj 1=

i 1+∑
----------------------=

xk i 1+, xki xk i 1+, xki–()ri 1++=

cjk i 1+, cjki fi 1+ wi 1+ xj i 1+, xji–() xk i 1+, xki–() 1 ri 1+–()+=

xk

fiwixki
i 1=

nr∑
fiwi

i 1=

nr∑
------------------------------=

sjk

fiwi xji xj–() xki xk–()
i 1=

n

∑
fi

n

∑
 1–

--=

rjk

sjk

sjjskk

---------------=

194 Chapter 3: Correlation and Covariance PV-WAVE:IMSL Statistics Reference

Example

This example illustrates the use of COVARIANCES for the first 50 observa-
tions in the Fisher iris data (Fisher 1936). Note that the first variable is constant
over the first 50 observations.

x = STATDATA(3)

x = x(0:49, *)

cov = COVARIANCES(x)

; Call COVARIANCES.

PM, cov

; Output the results.

0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.124249 0.0992163 0.0163551 0.0103306

0.00000 0.0992163 0.143690 0.0116980 0.00929796

0.00000 0.0163551 0.0116980 0.0301592 0.00606939

0.00000 0.0103306 0.00929796 0.00606939 0.0111061

Warning Errors

STAT_CONSTANT_VARIABLE — Correlations are requested, but the observa-
tions on one or more variables are constant. The corresponding correlations are
set to NaN.

PARTIAL_COV Function
Computes partial covariances or partial correlations from the covariance or cor-
relation matrix.

Usage

result = PARTIAL_COV(n_independent, n_dependent, x)

Input Parameters

n_independent — Number of “independent” variables to be used in the partial
covariances/correlations. The partial covariances/correlations are the covarianc-
es/correlations between the dependent variables after removing the linear effect
of the independent variables.

n_dependent — Number of variables for which partial covariances/correlations
are desired (the number of “dependent” variables).

PARTIAL_COV Function 195

x — The n by n covariance or correlation matrix, where n = n_independent +
n_dependent. The rows/columns must be ordered such that the first
n_independent rows/columns contain the independent variables, and the last
n_dependent rows/columns contain the dependent variables. Array x must al-
ways be square symmetric.

Returned Value

result — Array of size n_dependent by n_dependent containing the partial co-
variances (the default) or partial correlations (set keyword Corr).

Input Keywords

Double — If present and nonzero, double precision is used.

Indices — An array containing values indicating the status of the variable as in
the following table:

Default: The first n_independent elements of Indices are equal to 1, and
the last n_dependent elements are equal to 0.

Cov — If present and nonzero, then partial covariances are calculated. (De-
fault) Keywords Cov and Corr can not be used together.

Corr — If present and nonzero, then partial correlations are calculated. Key-
words Cov and Corr can not be used together.

Input/Output Keywords

Df — On input, an integer indicating the number of degrees of freedom associ-
ated with input array x. If the number of degrees of freedom in x varies from
element to element, then a conservative choice for Df is the minimum degrees
of freedom for all elements in x.

Upon output, named variable into which the number of degrees of freedom in
the test that the partial covariances/correlations are zero is stored. This value
will usually be Df − n_independent, but will be greater than this value if the in-
dependent variables are computationally linearly related. Keywords Df and

Indices(i) Variable is...

−1 not used in analysis

 0 dependent variable

1 independent variable

196 Chapter 3: Correlation and Covariance PV-WAVE:IMSL Statistics Reference

Pvals must be used together.

Output Keywords

Pvals — Named variable into which an array of size n_dependent by
n_dependent containing the p-values for testing the null hypothesis that the as-
sociated partial covariance/correlation is zero is stored. It is assumed that the
observations from which x was computed flows a multivariate normal distribu-
tion and that each element in x has Df degrees of freedom. Keywords Df and
Pvals must be used together.

Discussion

Function PARTIAL_COV computed partial covariances or partial correlations
from an input covariance or correlation matrix. If the “independent” variables
(the linear “effect” of the independent variables is removed in computing the
partial covariances/correlations) are linearly related to one another,
PARTIAL_COV detects the linearity and eliminates one or more of the inde-
pendent variables from the list of independent variables. The number of vari-
ables eliminated, if any, can be determined from keyword Df.

Given a covariance or correlation matrix Σ partitioned as

function PARTIAL_COV computed the partial covariances (of the standardized
variables if Σ is a correlation matrix) as

If partial correlations are desired, these are computed as

Σ Σ
Σ Σ

11 12

21 22

�
��

�
��

Σ Σ Σ Σ Σ22 1 22 21 11
1

12/ = − −

P diag diag22 1 22 1
1 2

22 1 22 1
1 2

/ /
/

/ /
/

=
− −

Σ Σ Σ� � � �

PARTIAL_COV Function 197

where diag denotes the matrix containing the diagonal of its argument along its
diagonal with zeros off the diagonal. If Σ11 is singular, then as many variables
as required are deleted from Σ11 (and Σ12) in order to eliminate the linear de-
pendencies. The computations then proceed as above.

The p-value for a partial covariance tests the null hypothesis H0: σij|1 = 0, where
σij|1 is the (i, j) element in matrix Σ22|1. The p-value for a partial correlation
tests the null hypothesis H0: ρij|1 = 0, where ρij|1 is the (i, j) element in matrix
P22|1. The p-values are returned in Pvals. If the degrees of freedom for x, Df, is
not known, the resulting p-values may be useful for comparison, but they
should not be used as an approximation to the actual probabilities.

Example 1

The following example computes partial covariances, scaled from a nine-vari-
able correlation matrix originally given by Emmett (1949). The first three rows
and columns contain the independent variables and the final six rows and col-
umns contain the dependent variables.

x = TRANSPOSE([$

[6.300, 3.050, 1.933, 3.365, 1.317, 2.293, 2.586, 1.242, 4.363],
$

[3.050, 5.400, 2.170, 3.346, 1.473, 2.303, 2.274, 0.750, 4.077],
$

[1.933, 2.170, 3.800, 1.970, 0.798, 1.062, 1.576, 0.487, 2.673],
$

[3.365, 3.346, 1.970, 8.100, 2.983, 4.828, 2.255, 0.925, 3.910],
$

[1.317, 1.473, 0.798, 2.983, 2.300, 2.209, 1.039, 0.258, 1.687],
$

[2.293, 2.303, 1.062, 4.828, 2.209, 4.600, 1.427, 0.768, 2.754],
$

[2.586, 2.274, 1.576, 2.255, 1.039, 1.427, 3.200, 0.785, 3.309],
$

[1.242, 0.750, 0.487, 0.925, 0.258, 0.768, 0.785, 1.300, 1.458],
$

[4.363, 4.077, 2.673, 3.910, 1.687, 2.754, 3.309, 1.458, 7.400]])

pcov = PARTIAL_COV(3, 6, x)

PM, pcov, Format = "(6F10.3)", Title = ’Partial Covariances’

Partial Covariances

 0.000 0.000 0.000 0.000 0.000 0.000

 0.000 0.000 0.000 0.000 0.000 0.000

 0.000 0.000 0.000 0.000 0.000 0.000

198 Chapter 3: Correlation and Covariance PV-WAVE:IMSL Statistics Reference

 0.000 0.000 0.000 5.495 1.895 3.084

 0.000 0.000 0.000 1.895 1.841 1.476

 0.000 0.000 0.000 3.084 1.476 3.403

Example 2

The following example computes partial correlations from a 9 variable correla-
tion matrix originally given by Emmett (1949). The partial correlations be-
tween the remaining variables, after adjusting for variables 1, 3 and 9, are
computed.

x = TRANSPOSE([$

[1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639], $

[0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645], $

[0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504], $

[0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505], $

[0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409], $

[0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472], $

[0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68], $

[0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47], $

[0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0]])

df = 30

indices = [1, 0, 1, 0, 0, 0, 0, 0, 1]

pcov = PARTIAL_COV(3, 6, x, Indices = indices, Df = df, $

 Pvals = pvals, /Corr)

PRINT, ’Degrees Of Freedom: ’, df

Degrees Of Freedom: 27

PM, pcov, Format = ’(6F10.3)’, Title = ’Partial Correlations’

Partial Correlations

 1.000 0.224 0.194 0.211 0.125 -0.061

 0.224 1.000 0.605 0.720 0.092 0.025

 0.194 0.605 1.000 0.598 0.123 -0.077

 0.211 0.720 0.598 1.000 0.035 0.086

 0.125 0.092 0.123 0.035 1.000 0.062

 -0.061 0.025 -0.077 0.086 0.062 1.000

PM, pvals, Format = ’(6F10.4)’, Title = ’P values’

P values

 0.0000 0.2525 0.3232 0.2801 0.5249 0.7576

 0.2525 0.0000 0.0006 0.0000 0.6417 0.9000

 0.3232 0.0006 0.0000 0.0007 0.5328 0.6982

 0.2801 0.0000 0.0007 0.0000 0.8602 0.6650

POOLED_COV Function 199

 0.5249 0.6417 0.5328 0.8602 0.0000 0.7532

 0.7576 0.9000 0.6982 0.6650 0.7532 0.0000

Warning Errors

STAT_NO_HYP_TESTS — The input matrix “x” has # degrees of freedom,
and the rank of the dependent variables is #. There are not enough degrees of
freedom for hypothesis testing. The elements of “Pvals” are set to NaN (not a
number).

Fatal Errors

STAT_INVALID_MATRIX_1 — The input matrix “x” is incorrectly specified.
A computed correlation is greater than 1 for variables # and #.

STAT_INVALID_PARTIAL — A computed partial correlation for variables
and # is greater than 1. The input matrix “x” is not positive semi-definite.

POOLED_COV Function
Compute a pooled variance-covariance from the observations.

Usage

result = POOLED_COV(x, ngroups)

Input Parameters

x — Two-dimensional array containing the data. The first n_variables =
(N_ELEMENTS(x(0,*)) – 1) columns correspond to the variables, and the last
column must contain the group numbers.

ngroups — Number of groups in the data.

Returned Value

result — Two-dimensional array containing the matrix of covariances.

Input Keywords

Double — If present and nonzero, double precision is used.

Idx_Cols — One-dimensional array containing the indices of the variables to be

200 Chapter 3: Correlation and Covariance PV-WAVE:IMSL Statistics Reference

used in the analysis.

Idx_Vars — Three element array indicating the column numbers of x in which
particular types of data are stored. Columns are numbered 0 ...
N_ELEMENTS(Idx_Cols) − 1.

Idx_Vars(0) contains the index for the column of x in which the group
numbers are stored.

Idx_Vars(1) and Idx_Vars(2) contain the column numbers of x in which
the frequencies and weights, respectively, are stored. Set Idx_Vars(1) =
−1 if there will be no column for frequencies. Set Idx_Vars(2) = −1 if
there will be no column for weights. Weights are rounded to the near-
est integer. Negative weights are not allowed.

Defaults: Idx_Cols = 0, 1, …, n_variables – 1,

 Idx_Vars(0) = n_variables,

 Idx_Vars(1) = −1, and

 Idx_Vars(2) = −1

Output Keywords

Gcounts — Named variable into which the array of length n_groups containing
the number of observations in each group is stored.

Sum_Weights — Named variable into which the array of length n_groups con-
taining the sum of the weights times the frequencies in the groups is stored.

Means — Named variable into which the array of size n_groups by n_variables
in which the i-th row of Means contains the group i variable means is stored.

U — Named variable into which the array of size n_variables by n_variables
containing the lower matrix U, the lower triangular for the pooled sample cross-
products matrix is stored. U is computed from the pooled sample covariance
matrix, S (See the Discussion section), as S = UTU.

Nmissing — Named variable into which the number of rows of data containing
missing values (NaN) for any of the variables used is stored.

Discussion

Function POOLED_COV computes the pooled variance-covariance matrix from
a matrix of observations. The within-groups means are also computed. Listwise
deletion of missing values is assumed so that all observations used are com-
plete; in any row of x, if any element of the observation is missing, the row is

POOLED_COV Function 201

not used. Function POOLED_COV should be used whenever the user suspects
that the data has been sampled from populations with different means but iden-
tical variance-covariance matrices. If these assumptions cannot be made, a dif-
ferent variance-covariance matrix should be estimated within each group.

If N_ELEMENTS(x(*,0)) (0, the group observation totals, Ti, for i = 1, …, g,
where g is the number of groups, are updated for the N_ELEMENTS(x(*,0)) ob-
servations in x. The group totals are computed as:

where wij is the observation weight, xij is the j-th observation in the i-th group,
and fij is the observation frequency.

Modified Givens rotations are used in computed the Cholesky decomposition of
the pooled sums of squares and crossproducts matrix. (Golub and Van Loan
1983).

The group means and the pooled sample covariance matrix S are computed
from the intermediate results. These quantities are defined by

T w f xi ij
j

ij ij= ∑

x
T

w fi
i

i i
j

• =
∑

S
f g

w f x x x x
ij

ij

ij ij ij i
i j

ij ii

T
=

−
− −

∑
∑ • •

1 � �� �
,

202 Chapter 3: Correlation and Covariance PV-WAVE:IMSL Statistics Reference

Example

The following example computes a pooled variance-covariance matrix. The last
column of the data set is the group indicator.

ngroups = 2

x = TRANSPOSE([[2.2, 5.6, 1], $

 [3.4, 2.3, 1], $

 [1.2, 7.8, 1], $

 [3.2, 2.1, 2], $

 [4.1, 1.6, 2], $

 [3.7, 2.2, 2]])

cov = POOLED_COV(x, ngroups)

PM, cov, Format = "(2F10.3)", Title = "Pooled Covariance Matrix"

Pooled Covariance Matrix

 0.708 -1.575

 -1.575 3.883

Warning Errors

STAT_OBSERVATION_IGNORED — In call #, row # of the matrix “x” has
group number = #. The group number must be between 1 and #, the number of
groups. This observation will be ignored.

ROBUST_COV Function
Computes a robust estimate of a covariance matrix and mean vector.

Usage

result = ROBUST_COV(x, n_groups)

Input Parameters

x — Two-dimensional array of size nrows by (n_variables + 1) containing the
data where nrows = N_ELEMENTS(x(*,0)) and n_variables =
(N_ELEMENTS(x(0,*)) – 1). The first n_variables columns correspond to the
variables, and the last column must contain the group numbers.

n_groups — Number of groups in the data.

ROBUST_COV Function 203

Returned Value

result — Two-dimensional array containing the matrix of covariances.

Input Keywords

Double — If present and nonzero, double precision is used.

Idx_Cols — One-dimensional array containing the indices of the variables to be
used in the analysis.

Idx_Vars — Three element array indicating the column numbers of x in which
particular types of data are stored. Columns are numbered 0 ...
N_ELEMENTS(Idx_Cols) − 1.

Idx_Vars(0) contains the index for the column of x in which the group
numbers are stored.

Idx_Vars(1) and Idx_Vars(2) contain the column numbers of x in which
the frequencies and weights, respectively, are stored. Set Idx_Vars(1) =
−1 if there will be no column for frequencies. Set Idx_Vars(2) = −1 if
there will be no column for weights. Weights are rounded to the near-
est integer. Negative weights are not allowed.

Defaults: Idx_Cols = 0, 1, …, n_variables - 1,

 Idx_Vars(0) = n_variables,

 Idx_Vars(1) = −1, and

 Idx_Vars(2) = −1

Mean_Est — Two-dimensional array of size n_groups by n_variables contain-
ing initial estimates for the mean. Keywords Mean_Est and Cov_Est must be
used together. Keywords Init_Est_Mean, Init_Est_Median, and Mean_Est can
not be used together.

Cov_Est — Two-dimensional array of size n_variables by n_variables contain-
ing the estimate of the covariance matrix. Keywords Mean_Est and Cov_Est
must be used together.

Init_Est_Mean — If present and nonzero, initial estimates are obtained as the
usual estimate of a mean vector and of a covariance matrix. Keywords
Init_Est_Mean, Init_Est_Median, and Mean_Est can not be used together.

Init_Est_Median — If present and nonzero, initial estimates based upon the
median and interquartile range must be used. Keywords Init_Est_Mean,
Init_Est_Median, and Mean_Est can not be used together.

204 Chapter 3: Correlation and Covariance PV-WAVE:IMSL Statistics Reference

Stahel — If present and nonzero, the Stahel’s algorithm is used. Keywords Sta-
hel and Huber can not be used together.

Huber — If present and nonzero, Huber’s conjugate-gradient algorithm is used.
Keywords Stahel and Huber can not be used together.

Percentage — Percentage of gross errors expected in the data. Keyword Per-
centage must be in the range 0.0 to 100.0 and contains the percentage of outli-
ers expected in the data. If the percentage of gross errors expected in the data is
not known, a reasonable strategy is to choose a value of Percentage that is such
that larger values do not result in significant changes in the estimates.

Default: Percentage = 5.0

Itmax — Maximum number of iterations.

Default: Itmax = 30

Tolerance — Convergence criterion. When the maximum absolute change in a
location or covariance estimate is less than Tolerance, convergence is assumed.

Default: Tolerance = 10−4

Output Keywords

Minimax_Weights — Named variable into which the one-dimensional array
containing the values for the parameters of the weighting function is stored. See
the Discussion section for details.

Group_Counts — Named variable into which the one-dimensional array of
length n_groups containing the number of observations in each group is stored.

Sum_Weights — Named variable into which the one-dimensional array of
length n_groups containing the sum of the weights times the frequencies in the
groups is stored.

Means — Named variable into which the array of size n_groups by n_variables
is stored. The i-th row of Means contains the group i variable means.

U — Named variable into which an array of size n_variables by n_variables
containing the lower matrix U, the lower triangular for the robust sample cross-
products matrix is stored. U is computed from the robust sample covariance ma-
trix, S (See the Discussion section), as S = UTU.

Beta — Named variable into which the constant used to ensure that the estimat-
ed covariance matrix has unbiased expectation (for a given mean vector) for a
multivariate normal density is stored.

Nmissing — Named variable into which the number of rows of data containing
missing values (NaN) for any of the variables used is stored.

ROBUST_COV Function 205

Discussion

Function ROBUST_COV computes robust M-estimates of the mean and covari-
ance matrix from a matrix of observations. A pooled estimate of the covariance
matrix is computed when multiple groups are present in the input data. M-esti-
mate weights are obtained using the “minimax” weights of Huber (1981, pp.
231-235), with Percentage expected gross errors. Huber’s (1981) weighting
equations are given by:

User specified observation weights and frequencies may be given for each row
in x. Listwise deletion of missing values is assumed so that all observations
used are “complete”.

Let f (x;µi, Σ) denote the density of an observation p-vector x in population
(group) i with mean vector µi, for i = 1, …, τ. Let the covariance matrix Σ be

such that Σ = RTR. If

y = R−Τ (x − µi)

then

It is assumed that g(y) is a spherically symmetric density in p-dimensions.

u r

a

r
r a

a r b

b

r
r b

w r
c

r

� �

� �

=

<

≤ ≤

>

�

�
���

���

= �
��

�
��

2

2

2

2

1

1min ,

g y f R yT
i i� � � �= +Σ Σ1 2/
; ,µ µ

206 Chapter 3: Correlation and Covariance PV-WAVE:IMSL Statistics Reference

In ROBUST_COV, Σ and µi are estimated as the solutions

of the estimation equations

and

where i indexes the τ groups, ni, is the number of observations in group i, fij is
the frequency for the j-th observation in group i, wij is the observation weight
specified in column Idx_Vars(2) of x, Ip is a p by p identity matrix,

w(r) and u(r) are the weighting functions, and where β is a constant computed
by the program to make the expected weighted Mahalanobis distance (yTy)
equal the expected Mahalanobis distance from a multivariate normal distribution
(see Marazzi 1985). The constant β is described more fully below.

Function ROBUST_COV uses one of two algorithms for solving the estimation
equations. The first algorithm is discussed in detail in Huber (1981) and is a
variant of the conjugate gradient method. The second algorithm is due to Stahel
(1981) and is discussed in detail by Marazzi (1985). In both algorithms, correc-
tion vectors Tki for the group i means and correction matrix Wk = Ip + Uk for the
Cholesky factorization of S are found such that the updated mean vectors are

$, $Σ µi� �

1
0

1n
f w w r yig ij ij

j

ni

ij� �
=
∑ =

1
0

11n
f w u r y y Iij

j

ni

i
ij ij ij ij

T
p

==
∑∑ − =

τ
β� �

r y yij ij
T

ij=

ROBUST_COV Function 207

given by

and the updated matrix R is given as

where k is the iteration number and

When all elements of Uk and Tki are less than ε = Tolerance, convergence is as-
sumed.

Three methods for obtaining estimates are allowed. In the first method, the sam-
ple weighted estimate of Σ is computed. In the second method, estimates based
upon the median and the interquartile range are used. Finally, in the last meth-
od, the user inputs initial estimates.

Function ROBUST_COV computes estimates based on the “minimax” weights
discussed above. The constant β is chosen such that E (u(r)r2) = ρβ where the
expectation is with respect to a standard p-variate multivariate normal distribu-
tion. This yields estimates with the correct expectation for the multivariate nor-
mal distribution (for given mean vector). The expectation is computed via
integration of estimated spline function. 200 knots are used on an equally
spaced grid from 0.0 to the 99.999 percentile of

distribution. An error estimate is computed based upon 100 of these knots. If
the estimated relative error is greater than 0.0001, a warning message is issued.
If β is not computed accurately (i.e., if the warning message is issued), the com-
puted estimates are still optimal, but the scale of the estimated covariance ma-

$ $, ,µ µi k i k kiT+ = +1

$ $R W Rk k k+ =1

$Σk k
T

kR R=

χ p
2

208 Chapter 3: Correlation and Covariance PV-WAVE:IMSL Statistics Reference

trix may need to be multiplied by a constant in order for

to have the correct multivariate normal covariance expectation.

Example 1

The following example computes a robust variance-covariance matrix. The last
column of the data set is the group indicator.

n_groups = 2

x = TRANSPOSE([[2.2, 5.6, 1.0], $

 [3.4, 2.3, 1.0], $

 [1.2, 7.8, 1.0], $

 [3.2, 2.1, 2.0], $

 [4.1, 1.6, 2.0], $

 [3.7, 2.2, 2.0]])

cov = ROBUST_COV(x, n_groups)

PM, cov, Title ="Robust Covariance Matrix"

Robust Covariance Matrix

 0.522022 -1.16027

 -1.16027 2.86203

Example 2

The following example computes estimates of the pooled covariance matrix for
the Fisher’s iris data. For comparison, the estimates are first computed via func-
tion POOLED_COV. Function ROBUST_COV with Percentage = 2.0 is then
used to compute the robust estimates. As can be seen from the output, the re-
sulting estimates are quite similar.

Next, three observations are made into outliers, and again, estimates are com-
puted using functions POOLED_COV and ROBUST_COV. When outliers are
present, the estimates of POOLED_COV are adversely affected, while the esti-
mates produced by ROBUST_COV are close to the estimates produced when
no outliers are present.

n_groups = 3

idxv = [1, 2, 3, 4]

idxc = [0, -1, -1]

percentage = 2.0

x = STATDATA(3)

$Σ

ROBUST_COV Function 209

p_cov = POOLED_COV(x, n_groups, Idx_Vars = idxv, $

 Idx_Cols = idxc)

PM, p_cov, Title = "Pooled Cavariance with No Outliners"

Pooled Cavariance with No Outliners

 0.265008 0.0927211 0.167514 0.0384014

 0.0927211 0.115388 0.0552436 0.0327102

 0.167514 0.0552436 0.185188 0.0426653

 0.0384014 0.0327102 0.0426653 0.0418816

r_cov = ROBUST_COV(x, n_groups, Idx_Vars = idxv, $

 Idx_Cols = idxc, Percentage = percentage)

PM, r_cov, Title = "Robust Covariance with No Outliners"

Robust Covariance with No Outliners

 0.247410 0.0872090 0.153530 0.0359695

 0.0872090 0.107336 0.0538220 0.0321557

 0.153530 0.0538220 0.170550 0.0411720

 0.0359695 0.0321557 0.0411720 0.0401394

210 Chapter 3: Correlation and Covariance PV-WAVE:IMSL Statistics Reference

211

CHAPTER

4

Analysis of Variance
This chapter describes functions for analysis of variance models and for multi-
ple comparison methods for means.

Contents of Chapter
Analyzes a one-way classification
model ..ANOVA1 Function

Analyzes a balanced factorial design
with fixed effects ANOVAFACT Function

Performs Student-Newman-Keuls
multiple comparisons test............. MULTICOMP Function

Nested random model ANOVANESTED Function

Balanced fixed, random,
or mixed model.................. ANOVABALANCED Function

Introduction
The functions described in this chapter are for commonly-used experimental de-
signs. Typically, responses are stored in the input vector y in a pattern that takes
advantage of the balanced design structure. Consequently, the full set of model
subscripts is not needed to identify each response. The functions assume the
usual pattern, which requires that the last model subscript change most rapidly,
followed by the model subscript next in line, and so forth, with the first sub-
script changing at the slowest rate. This pattern is referred to as lexicographical

212 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

ordering.

Function ANOVA1 allows missing responses if confidence interval information
is not requested. NaN (Not a Number) is the missing value code used by these
functions. Use function MACHINE to retrieve NaN. Any element of y that is
missing must be set to NaN. Other functions described in this chapter do not
allow missing responses because the functions generally deal with balanced
designs.

As a diagnostic tool for determination of the validity of a model, functions in
this chapter typically perform a test for lack of fit when n (n > 1) responses are
available in each cell of the experimental design. Functions in Chapter 2: Re-
gression are used for analysis of generalizations of the models treated in this
chapter. In particular, Chapter 2: Regression, also provides functions for the
general linear model.

ANOVA1 Function
Analyzes a one-way classification model.

Usage

result = ANOVA1(n, y)

Input Parameters

n — One-dimensional array containing the number of responses for each group.

y — One-dimensional array of length

 n(0) + n(1) + ...+ n(N_ELEMENTS(n) – 1)

containing the responses for each group.

Returned Value

result — The p-value for the F-statistic.

Input Keywords

Double — If present and nonzero, then double precision is used.

ANOVA1 Function 213

Confidence — Confidence level for the simultaneous interval estimation. If
Tukey is specified, Confidence must be in the range [90.0, 99.0); otherwise,
Confidence is in the range [0.0, 100.0).

Default: Confidence = 95.0

Output Keywords

Anova_Table — Named variable into which the analysis of variance table is
stored.

The analysis of variance statistics are as follows:

Group_Means — Named variable into which the array containing the group
means is stored.

Group_Std_Dev — Named variable into which the array containing the group
standard deviations is stored.

Group_Counts — Named variable into which the array containing the number
of nonmissing observations for the groups is stored.

Tukey or
Dunn_Sidak or

Element Analysis of Variance Statistics

0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 error mean square
8 overall F-statistic
9 p-value
10 R2 (in percent)
11 Adjusted R2 (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

214 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

Bonferroni or
Scheffe or
One_At_A_Time — Named variable into which the array containing the statis-
tics relating to the difference of means is stored. On return, the named variable
contains an array of size

where ngroups = N_ELEMENTS(n).

Function ANOVA1 computes the confidence intervals on all pairwise differ-
ences of means using one of six methods: Tukey, Tukey-Kramer, Dunn-Sidák,
Bonferroni, Scheffé, or Fisher’s LSD (One-at-a-Time). If Tukey is specified, the
Tukey confidence intervals are calculated if the group sizes are equal; other-
wise, the Tukey-Kramer confidence intervals are calculated.

Discussion

Function ANOVA1 performs an analysis of variance of responses from a one-
way classification design. The model is

yij = µi + εij i = 1, 2, ..., k; j = 1, 2, ..., ni

where the observed value yij constitutes the j-th response in the i-th group, µi
denotes the population mean for the i-th group, and the εij arguments are errors
that are identically and independently distributed normal with mean 0 and vari-
ance σ2. Function ANOVA1 requires the yij observed responses as input into a
single vector y with responses in each group occupying contiguous locations.
The analysis of variance table is computed along with the group sample means
and standard deviations. A discussion of formulas and interpretations for the
one-way analysis of variance problem appears in most statistics texts, e.g.,
Snedecor and Cochran (1967, Chapter 10).

Column Description

0 group number for the i-th mean
1 group number for the j-th mean
2 difference of means (i-th mean) − (j-th mean)
3 lower confidence limit for the difference
4 upper confidence limit for the difference

ngroups
2

 5×

ANOVA1 Function 215

Function ANOVA1 computes simultaneous confidence intervals on all

pairwise comparisons of k means µ1, µ2, ..., µk in the one-way analysis of vari-
ance model. Any of several methods can be chosen. A good review of these
methods is given by Stoline (1981). The methods also are discussed in many
statistics texts, e.g., Kirk (1982, pp. 114–127).

Let s2 be the estimated variance of a single observation. Let ν be the degrees of
freedom associated with s2. Let

The methods are summarized as follows:

Tukey method: The Tukey method gives the narrowest simultaneous confidence
intervals for all pairwise differences of means µi – µj in balanced (n1 = n2 = ...
nk = n) one-way designs. The method is exact and uses the Studentized range
distribution. The formula for the difference µi – µj is given by the following:

where

is the (1 – α) 100 percentage point of the Studentized range distribution with
parameters k and ν.

Tukey-Kramer method: The Tukey-Kramer method is an approximate extension
of the Tukey method for the unbalanced case. (The method simplifies to the
Tukey method for the balanced case.) The method always produces confidence
intervals narrower than the Dunn-Sidák and Bonferroni methods. Hayter (1984)
proved that the method is conservative, i.e., the method guarantees a confi-
dence coverage of at least (1 – α) 100. Hayter’s proof gave further support to
earlier recommendations for its use (Stoline 1981). (Methods that are currently
better are restricted to special cases and only offer improvement in severely

k ′
k k 1–()

2
-------------------=

α 1
Confidence

100.0
---------------------------–=

yi yj– q1 α k ν,;–
s2

n
----±

q1 α k ν,;–

216 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

unbalanced cases; see, for example, Spurrier and Isham 1985.) The formula for
the difference µi – µj is given by the following:

Dunn- Sidák method: The Dunn-Sidák method is a conservative method. The
method gives wider intervals than the Tukey-Kramer method. (For large ν and
small α and k, the difference is only slight.) The method is slightly better than
the Bonferroni method and is based on an improved Bonferroni (multiplicative)
inequality (Miller 1980, pp. 101, 254–255). The method uses the t distribution
(see function TCDF. The formula for the difference µi – µj is given by the
following:

where tf;v

is the 100f percentage point of the t distribution with ν degrees of freedom.

Bonferroni method: The Bonferroni method is a conservative method based on
the Bonferroni (additive) inequality (Miller, p. 8). The method uses the t distri-
bution. The formula for the difference µi – µj is given by the following:

Scheffé method: The Scheffé method is an overly conservative method for
simultaneous confidence intervals on pairwise difference of means. The method
is applicable for simultaneous confidence intervals on all contrasts, i.e., all lin-
ear combinations

yi yj– q1 α k ν,;–
s2

2ni

s2

2nj

-------+±

yi yj– t1
2

1
2
--- 1 α–()1 k′⁄ ν;+

s2

ni

s2

nj

----+±

yi yj– t
1

α
2k′
------- ν;–

s2

ni

s2

nj

----+±

ci

k

∑ µi

ANOVA1 Function 217

where the following is true:

This method can be recommended here only if a large number of confidence
intervals on contrasts, in addition to the pairwise differences of means, are to be
constructed. The method uses the F distribution (see function FCDF. The for-
mula for the difference µi – µj is given by the following:

where

is the (1 – α) 100 percentage point of the F distribution with k – 1 and ν
degrees of freedom.

One-at-a-Time t method (Fisher’s LSD): The One-at-a-Time t method is
appropriate for constructing a single confidence interval. The confidence per-
centage input is appropriate for one interval at a time. The method has been
used widely in conjunction with the overall test of the null hypothesis µ1 = µ2 =
... = µk by the use of the F statistic. Fisher’s LSD (least significant difference)
test is a two-stage test that proceeds to make pairwise comparisons of means
only if the overall F test is significant. Milliken and Johnson (1984, p. 31) rec-
ommend LSD comparisons after a significant F only if the number of
comparisons is small and the comparisons were planned prior to the analysis. If
many unplanned comparisons are made, they recommend Scheffé’s method. If
the F test is insignificant, a few planned comparisons for differences in means
can still be performed by using either Tukey, Tukey-Kramer, Dunn-Sidák, or
Bonferroni methods. Because the F test is insignificant, Scheffé’s method does
not yield any significant differences. The formula for the difference µi – µj is
given by the following:

ci

k

∑ 0=

yi yj– k 1–()F1 α k 1– ν,;–
s2

ni

s2

nj
----+

 ±

F1 α k 1– ν,;–

yi yj– t
1

α
2
--- ν;–

s2

ni

s2

nj
----+±

218 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

Example 1

This example computes a one-way analysis of variance for data discussed by
Searle (1971, Table 5.1, pp. 165–179). The responses are plant weights for six
plants of three different types—three normal, two off-types, and one aberrant.

n = [3,2,1]

y = [101.0, 105.0, 94.0, 84.0, 88.0, 32.0]

PRINT,’p-value = ’, ANOVA1(n, y)

p-value = 0.00276887

Example 2: Multiple Comparisons

Simultaneous confidence intervals are generated for the following measure-
ments of cold-cranking power for five models of automobile batteries. Nelson
(1989, pp. 232–241) provided the data and approach.

The Tukey method is chosen for the analysis of pairwise comparisons, with a
confidence level of 99 percent. The means and their confidence limits are out-
put. First, a procedure to print out the results is defined.

PRO print_results, anova_table, diff_means

anova_labels = ["df for among groups", $

"df for within groups", $

"total (corrected) df", $

"ss for among groups", $

"ss for within groups", $

Normal Off-Type Aberrant

101 84 32

105 88

94

Model 1 Model 2 Model 3 Model 4 Model 5

41 42 27 48 28

43 43 26 45 32

42 46 28 51 37

46 38 27 46 25

ANOVA1 Function 219

"total (corrected) ss", $

"mean square among groups", $

"mean square within groups", $

"F-statistic", $

"P-value", $

"R-squared (in percent)", $

"adjusted R-squared (in percent)", $

"est. std of within group error", $

"overall mean of y", $

"coef. of variation (in percent)"]

PRINT, " * *Analysis of Variance * *"

FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), Format = ’(a40,f20.2)’

PRINT

; Print the analysis of variance table.

PRINT, " * *Differences of Means * *"

PRINT, " groups", " difference", " lower limit", " upper limit"

PM, diff_means, Format = $

’(2i3, x, f9.2, 4x, f9.2, 5x, f9.2)’

; Print the differences of means.

END

n = [4, 4, 4, 4, 4]

y = [41, 43, 42, 46, $

42, 43, 46, 38, $

27, 26, 28, 27, $

48, 45, 51, 46, $

28, 32, 37, 25]

p_value = ANOVA1(n, y, Confidence = 99.0, $

Anova_Table = anova_table, $

Tukey = diff_means)

; Call ANOVA1.

print_results, anova_table, diff_means

; Output the results.

* *Analysis of Variance * *

df for among groups 4.00

df for within groups 15.00

total (corrected) df 19.00

ss for among groups 1242.20

ss for within groups 150.75

220 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

total (corrected) ss 1392.95

mean square among groups 310.55

mean square within groups 10.05

F-statistic 30.90

P-value 0.00

R-squared (in percent) 89.18

adjusted R-squared (in percent) 86.29

est. std of within group error 3.17

overall mean of y 38.05

coef. of variation (in percent) 8.33

* *Differences of Means * *

groups difference lower limit upper limit

 1 2 0.75 -8.05 9.55

 1 3 16.00 7.20 24.80

 1 4 -4.50 -13.30 4.30

 1 5 12.50 3.70 21.30

 2 3 15.25 6.45 24.05

 2 4 -5.25 -14.05 3.55

 2 5 11.75 2.95 20.55

 3 4 -20.50 -29.30 -11.70

 3 5 -3.50 -12.30 5.30

 4 5 17.00 8.20 25.80

ANOVAFACT Function 221

ANOVAFACT Function
Analyzes a balanced factorial design with fixed effects.

Usage

result = ANOVAFACT(n_levels, y)

Input Parameters

n_levels — One-dimensional array containing the number of levels for each of
the factors and the number of replicates for each effect.

y — One-dimensional array of length

n_levels (0) * n_levels (1) * ... * ((N_ELEMENTS (n_levels) – 1))

containing the responses. Parameter y must not contain NaN for any of its ele-
ments, i.e., missing values are not allowed.

Returned Value

result — The p-value for the overall F-test.

Input Keywords

Double — If present and nonzero, then double precision is used.

Order — Number of factors included in the highest-way interaction in the
model. Order must be in the interval [1, N_ELEMENTS (n_levels) – 1]. For
example, an Order of 1 indicates that a main-effect model is analyzed, and an
Order of 2 indicates that two-way interactions are included in the model.

Default: Order = N_ELEMENTS(n_levels) – 1)

Pure_Error
Pool_Inter — If present and nonzero, Pure_Error (the default option) indicates
all the main effect and the interaction effects involving the replicates, the last
element in n_levels, are pooled together to create the error term. The Pool_Inter
option indicates (Order + 1)-way and higher-way interactions are pooled
together to create the error. Keywords Pure_Error and Pool_Inter cannot be
used together.

222 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

Output Keywords

Anova_Table — Named variable into which an array of size 15 containing the
analysis of variance table is stored. The analysis of variance statistics are given
as follows:

Test_Effects — Named variable into which an array of size nef x 4 containing
statistics relating to the sums of squares for the effects in the model is stored.
Here,

where n is given by N_ELEMENTS(n_levels) if Pool_Inter is specified; other-
wise, N_ELEMENTS(n_levels) – 1.

Element Analysis of Variance Statistics

0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 error mean square
8 overall F-statistic
9 p-value

10 R2 (in percent)
11 adjusted R2 (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

nef
n
1

 n
2

 ...
n

min(n, Order)
 + + +=

ANOVAFACT Function 223

Suppose the factors are A, B, C, and error. With Order = 3, rows 0 through nef
– 1 correspond to A, B, C, AB, AC, BC, and ABC. The columns of Test_Effects

are as follows:

Means — Named variable into which an array of length
(n_levels(0) + 1) x (n_levels(1) + 1) x x (n_levels(n–1) + 1) containing the
subgroup means is stored.

See keyword Test_Effects for a definition of n. If the factors are A, B, C, and
replicates, the ordering of the means is grand mean, A means, B means, C
means, AB means, AC means, BC means, and ABC means.

Discussion

Function ANOVAFACT performs an analysis for an n-way classification design
with balanced data. For balanced data, there must be an equal number of
responses in each cell of the n-way layout. The effects are assumed to be fixed
effects. The model is an extension of the two-way model to include n factors.
The interactions (two-way, three-way, up to n-way) can be included in the
model, or some of the higher-way interactions can be pooled into error. The
keyword Order specifies the number of factors to be included in the highest-
way interaction. For example, if three-way and higher-way interactions are to be
pooled into error, set Order = 2.

By default, Order = N_ELEMENTS (n_levels) – 1 with the last subscript being
the replicates subscript. Keyword Pure_Error indicates there are repeated
responses within the n-way cell; Pool_Inter indicates otherwise.

Function ANOVAFACT requires the responses as input into a single vector y in
lexicographical order, so that the response subscript associated with the first
factor varies least rapidly, followed by the subscript associated with the second
factor, and so forth. Hemmerle (1967, Chapter 5) discusses the computational
method.

Column Description

0 degrees of freedom
1 sum of squares
2 F-statistic
3 p-value

224 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

Example 1

A two-way analysis of variance is performed with balanced data discussed by
Snedecor and Cochran (1967, Table 12.5.1, p. 347). The responses are the
weight gains (in grams) of rats that were fed diets varying in the source (A) and
level (B) of protein.

The model is

for ; ;

where

for

for i = 0, 1. The first responses in each cell in the two-way layout are given in
the following table:

n = [3, 2, 10]

y = [73.0, 102.0, 118.0, 104.0, 81.0, $

107.0, 100.0, 87.0, 117.0, 111.0,$

90.0, 76.0, 90.0, 64.0, 86.0,$

Protein Level (B) Protein Source (A)

Beef Cereal Pork

High 73, 102, 118, 104,
81, 107, 100, 87,
117, 111

98, 74, 56, 111, 95,
88, 82, 77, 86, 92

94, 79, 96, 98, 102,
102, 108, 91, 120,
105

Low 90, 76, 90, 64, 86,
51, 72, 90, 95, 78

107, 95, 97, 80, 98,
74, 74, 67, 89, 58

49, 82, 73, 86, 81,
97, 106, 70, 61, 82

yijk µ αi βj γij εijk+ + + +=

i 0 1,= j 0 1 2, ,= k 0 1 … 9, , ,=

α i

i 0=

1

∑ 0 βj

j 0=

2

∑; 0 γij

i 0=

1

∑; 0= = =

j 0 1 2 and, ,=

γ ij

j 0=

2

∑ 0=

ANOVAFACT Function 225

51.0, 72.0, 90.0, 95.0, 78.0,$

98.0, 74.0, 56.0, 111.0, 95.0,$

88.0, 82.0, 77.0, 86.0, 92.0,$

107.0, 95.0, 97.0, 80.0, 98.0, $

74.0, 74.0, 67.0, 89.0, 58.0,$

94.0, 79.0, 96.0, 98.0, 102.0, $

102.0, 108.0, 91.0, 120.0, 105.0, $

49.0, 82.0, 73.0, 86.0, 81.0,$

97.0, 106.0, 70.0, 61.0, 82.0]

p_value = ANOVAFACT(n, y, $

Anova_Table = anova_table)

PRINT, "p-value = ", p_value

p-value = 0.00229943

Example 2: Two-way ANOVA

In this example, the same model and data are fit as in the initial example, but
keywords are used for a more complete analysis. First, a procedure to output the
results is defined.

PRO print_results, anova_table, test_effects, means

anova_labels = ["df for among groups", $

"df for within groups", $

"total (corrected) df", $

"ss for among groups", $

"ss for within groups", $

"total (corrected) ss", $

"mean square among groups", $

"mean square within groups", $

"F-statistic", $

"P-value", $

"R-squared (in percent)", $

"adjusted R-squared (in percent)", $

"est. std of within group error", $

"overall mean of y", $

"coef. of variation (in percent)"]

effects_labels = ["A ", "B ", "A*B"]

means_labels = ["grand", "A1", "A2", $

"A3", "B1", "B2", "A1*B1", "A1*B2", $

"A2*B1", "A2*B2", "A3*B1", "A3*B2"]

PRINT, " * *Analysis of Variance * *"

226 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), Format = ’(a40,f15.2)’

PRINT

; Print the analysis of variance table.

PRINT, " * * Variation Due to the Model * *"

PRINT, "Source DF SS MS P-value"

FOR i = 0, 2 DO PM, effects_labels(i), $

test_effects(i, *)

PRINT

; Print the statistics for effects.

PRINT, " * * Subgroup Means * *"

FOR i = 0, 11 DO PM, means_labels(i), $

means(i), Format = ’(a5,f15.2)’

; Print the means.

END

n = [3, 2, 10]

y = [73.0, 102.0, 118.0, 104.0, 81.0, $

107.0, 100.0, 87.0, 117.0, 111.0,$

90.0, 76.0, 90.0, 64.0, 86.0,$

51.0, 72.0, 90.0, 95.0, 78.0,$

98.0, 74.0, 56.0, 111.0, 95.0,$

88.0, 82.0, 77.0, 86.0, 92.0, $

107.0, 95.0, 97.0, 80.0, 98.0,$

74.0, 74.0, 67.0, 89.0, 58.0,$

94.0, 79.0, 96.0, 98.0, 102.0, $

102.0, 108.0, 91.0, 120.0, 105.0,$

49.0, 82.0, 73.0, 86.0, 81.0,$

97.0, 106.0, 70.0, 61.0, 82.0]

p_value = ANOVAFACT(n, y, $

Anova_Table = anova_table, $

Test_Effects = test_effects, Means = means)

print_results, anova_table, test_effects, $

means

 * *Analysis of Variance * *

df for among groups 5.00

df for within groups 54.00

total (corrected) df 59.00

ss for among groups 4612.93

ss for within groups 11586.00

total (corrected) ss 16198.93

ANOVAFACT Function 227

mean square among groups 922.59

mean square within groups 214.56

F-statistic 4.30

P-value 0.00

R-squared (in percent) 28.48

adjusted R-squared (in percent) 21.85

est. std of within group error 14.65

overall mean of y 87.87

coef. of variation (in percent) 16.67

 * * Variation Due to the Model * *

Source DF SS MS P-value

A 2.00000 266.533 0.621128 0.541132

B 1.00000 3168.27 14.7667 0.000322342

A*B 2.00000 1178.13 2.74552 0.0731880

 * * Subgroup Means * *

grand 87.87

 A1 89.60

 A2 84.90

 A3 89.10

 B1 95.13

 B2 80.60

A1*B1 100.00

A1*B2 79.20

A2*B1 85.90

A2*B2 83.90

A3*B1 99.50

A3*B2 78.70

Example 3: Three-way ANOVA

This example performs a three-way analysis of variance using data discussed by
John (1971, pp. 91–92). The responses are weights (in grams) of roots of carrots
grown with varying amounts of applied nitrogen (A), potassium (B), and phos-
phorus (C). Each cell of the three-way layout has one response. Note that the
ABC interactions sum of squares (186) is given incorrectly by John (1971,
Table 5.2.)

The three-way layout is given in the following table:

A0 A1 A2

B0 B1 B2 B0 B1 B2 B0 B1 B2

C0 88.76 91.41 97.85 94.83 100.49 99.75 99.90 100.23 104.51

228 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

PRO print_results, anova_table, $

test_effects, means

anova_labels = ["df for among groups", $

"df for within groups", $

"total (corrected) df", $

"ss for among groups", $

"ss for within groups", $

"total (corrected) ss", $

"mean square among groups", $

"mean square within groups", $

"F-statistic", $

"P-value", $

"R-squared (in percent)", $

"adjusted R-squared (in percent)", $

"est. std of within group error", $

"overall mean of y", $

"coef. of variation (in percent)"]

effects_labels = ["A ", "B ", "C ", "A*B", "A*B", "A*C"]

PRINT, " * *Analysis of Variance * *"

FOR i = 0, 14 DO PM, anova_labels(i), $

anova_table(i), Format = ’(a40,f15.2)’

PRINT

; Print the analysis of variance table.

PRINT, " * * Variation Due to the Model * *"

PRINT, "Source DF SS MS P-value"

FOR i = 0,5 DO PM, effects_labels(i), $

test_effects(i, *)

; Print the statistics for effects.

END

n = [3, 3, 3]

y = [88.76, 87.45, 86.01, 91.41, $

98.27, 104.20, 97.85, $

95.85, 90.09, 94.83, 84.57, $

81.06, 100.49, 97.20, $

120.80, 99.75, 112.30, 108.77, $

C1 87.45 98.27 95.85 84.57 97.20 112.30 92.98 107.77 110.94

C2 86.01 104.20 90.09 81.06 120.80 108.77 94.72 118.39 102.87

A0 A1 A2

ANOVAFACT Function 229

99.90, 92.98, 94.72, $

100.23, 107.77, 118.39, 104.51, $

110.94, 102.87]

p_value = ANOVAFACT(n, y, Anova_Table = anova_table, $

Test_Effects = test_effects, /Pool_Inter)

print_results, anova_table, test_effects

 * *Analysis of Variance * *

df for among groups 18.00

df for within groups 8.00

total (corrected) df 26.00

ss for among groups 2395.73

ss for within groups 185.78

total (corrected) ss 2581.51

mean square among groups 133.10

mean square within groups 23.22

F-statistic 5.73

p-value 0.01

R-squared (in percent) 92.80

adjusted R-squared (in percent) 76.61

est. std of within group error 4.82

overall mean of y 98.96

coef. of variation (in percent) 4.87

 * * Variation Due to the Model * *

Source DF SS MS p-value

A 2.00000 488.368 10.5152 0.00576699

B 2.00000 1090.66 23.4832 0.000448704

C 2.00000 49.1484 1.05823 0.391063

A*B 4.00000 142.586 1.53502 0.280423

A*B 4.00000 32.3474 0.348241 0.838336

A*C 4.00000 592.624 6.37997 0.0131252

230 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

MULTICOMP Function
Performs Student-Newman-Keuls multiple-comparisons test.

Usage

result = MULTICOMP(means, df, std_error)

Input Parameters

means — One-dimensional array containing the means.

df — Degrees of freedom associated with std_error.

std_error — Effective estimated standard error of a mean. In fixed effects mod-
els, std_error equals the estimated standard error of a mean.

For example, in a one-way model,

where s2 is the estimate of σ2 and n is the number of responses in a sample
mean. In models with random components, use

where sedif is the estimated standard error of the difference of two means.

Returned Value

result — A one-dimensional array of length N_ELEMENTS(means) indicating
the size of the groups of means declared to be equal. If the i-th element of the
returned array is equal to j, then the i-th smallest mean and the next j – 1 larger
means are declared equal. If the i-th element of the returned array is equal to 0,
then no group of means starts with the i-th smallest mean.

Input Keywords

Double — If present and nonzero, then double precision is used.

std_error
s2

n
----=

std_error
sedif

2
-----------=

ANOVANESTED Function 231

Alpha — Significance level of test. Must be in the interval [0.01, 0.10].

Default: Alpha = 0.01

Discussion

Function MULTICOMP performs a multiple-comparison analysis of means
using the Student-Newman-Keuls method. The null hypothesis is equality of all
possible ordered subsets of a set of means. This null hypothesis is tested using
the Studentized range of each of the corresponding subsets of sample means.
The method is discussed in many elementary statistics texts, e.g., Kirk (1982,
pp. 123–125).

Example

A multiple-comparisons analysis is performed using data discussed by Kirk.
The results show that there are three groups of means with three separate sets of
values:
 (36.7, 40.3, 43.4), (40.3, 43.4, 47.2), and (43.4, 47.2, 48.7).

df = 45

std_error = 1.6970563

means = [36.7, 48.7, 43.4, 47.2, 40.3]

equal_means = MULTICOMP(means, df, std_error)

PM, equal_means, $

Title = "Size of groups of means:"

Size of groups of means:

 3

 3

 3

 0

ANOVANESTED Function
Analyzes a completely nested random model with possibly unequal numbers in

232 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

the subgroups.

Usage

result = ANOVANESTED(n_factors, eq_option, n_levels, y)

Input Parameters

n_factors — Number of factors (number of subscripts) in the model, including
error.

eq_option — Equal numbers option.

n_levels — One-dimensional array with the number of levels.

If eq_option = 1, n_levels is of length n_factors and contains the number of lev-
els for each of the factors. In this case, the following additional variables are re-
ferred to in the description of ANOVANESTED:

eq_option Description

0 Unequal numbers in the subgroups

1 Equal numbers in the subgroups

Variable Description

LNL n_levels(1) +

 ... + n_levels(0) * n_levels(1) *

 ... * n_levels(n_factors – 2)

LNLNF n_levels(0) * n_levels(1) * ...*

n_levels(n_factors – 2)

NOBS The number of observations. NOBS equals

n_levels(0) * n_levels(1) * ... *

n_levels(n_factors-1).

ANOVANESTED Function 233

If eq_option = 0, n_levels contains the number of levels of each factor at each
level of the factor in which it is nested. In this case, the following additional
variables are referred to in the description of ANOVANESTED:

For example, a random one-way model with two groups, five responses in the
first group and ten in the second group, would have LNL= 3, LNLNF= 2,
NOBS = 15, n_levels(0) = 2, n_levels(1) = 5, and n_levels(2) = 10.

y — One-dimensional array of length NOBS containing the responses.

Returned Value

result — The p-value for the F-statistic.

Input Keywords

Double — If present and nonzero, then double precision is used.

Confidence — Confidence level for two-sided interval estimates on the vari-
ance components, in percent. Confidence percent confidence intervals are com-
puted, hence, Confidence must be in the interval [0.0, 100.0). Confidence often
will be 90.0, 95.0, or 99.0. For one-sided intervals with confidence level
ONECL, ONECL in the interval [50.0, 100.0), set Confidence = 100.0 - 2.0 *
(100.0 - ONECL).

Default: Confidence = 95.0

Output Keywords

Anova_Table — Named variable into which the array of size 15 containing the
analysis of variance table is stored. The analysis of variance statistics are as fol-

Variable Description

LNL Length of n_levels.

LNLNF Length of the subvector of n_levels for the last
factor.

NOBS Number of observations. NOBS equals the
sum of the last LNLNF elements of n_levels.
n_levels(n_factors-1).

234 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

lows:

Var_Comp — Named variable into which an array of size n_factors by 9 con-
taining statistics relating to the particular variance components in the model is
stored. Rows of Var_Comp correspond to the n_factors factors. Columns of
Var_Comp are as follows:

Element Analysis of Variance Statistics

0 Degrees of freedom for the model

1 Degrees of freedom for error

2 Total (corrected) degrees of freedom

3 Sum of squares for the model

4 Sum of squares for error

5 Total (corrected) sum of squares

6 Model mean square

7 Error mean square

8 Overall F-statistic

9 p-value

10 R2 (in percent)

11 Adjusted R2 (in percent)

12 Estimate of the standard deviation

13 Overall mean of y

14 Coefficient of variation (in percent)

ANOVANESTED Function 235

If a test for the error variance equal to zero cannot be performed,
Var_Comp(n_factors, 4) and Var_Comp(n_factors, 5) are set to NaN (not a
number).

Ems — One-dimensional array of length n_factors * ((n_factors + 1)/2) with
expected mean square coefficients.

Y_Means — One-dimensional array containing the subgroup means.

Column Descriptions

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F -statistic

5 p-value for F test

6 Variance component estimate

7 Percent of variance explained by variance
component

8 Lower endpoint for a confidence interval
on the variance component

9 Upper endpoint for a confidence interval
on the variance component

eq_option Length of y means

0 1 + n_levels(0) + n_levels(1) + …
n_levels((LNL - LNLNF)-1)
(See the description of argument
n_levels for definitions of LNL and
LNLNF.)

1 1 + n_levels(0) + n_levels(0) *
n_levels(1) + … + n_levels(0)*
n_levels(1) * … * n_levels
(n_factors – 2)

236 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

If the factors are labeled A, B, C, and error, the ordering of the means is grand
mean, A means, AB means, and then ABC means.

Discussion

Function ANOVANESTED analyzes a nested random model with equal or un-
equal numbers in the subgroups. The analysis includes an analysis of variance
table and computation of subgroup means and variance component estimates.
Anderson and Bancroft (1952, pages 325−330) discuss the methodology. The
analysis of variance method is used for estimating the variance components.
This method solves a linear system in which the mean squares are set to the ex-
pected mean squares. A problem that Hocking (1985, pages 324−330) discuss-
es is that this method can yield negative variance component estimates.
Hocking suggests a diagnostic procedure for locating the cause of a negative es-
timate. It may be necessary to reexamine the assumptions of the model.

Example 1

An analysis of a three-factor nested random model with equal numbers in the
subgroups is performed using data discussed by Snedecor and Cochran (1967,
Table 10.16.1, pages 285−288). The responses are calcium concentrations (in
percent, dry basis) as measured in the leaves of turnip greens. Four plants are
taken at random, then three leaves are randomly selected from each plant.
Finally, from each selected leaf two samples are taken to determine calcium
concentration. The model is

yijk = µ + αi + βij + eijk i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2

where yijk is the calcium concentration for the k-th sample of the j-th leaf of the
i-th plant, the αi’s are the plant effects and are taken to be independently dis-
tributed

the βij’s are leaf effects each independently distributed

N (,)0 2σ

N (,)0 2σβ

ANOVANESTED Function 237

and the εijk’s are errors each independently distributed N(0, σ2). The effects are all
assumed to be independently distributed. The data are given in the following ta-
ble:

PRO print_results, p, at, ems, y_means, var_comp

anova_labels = ["degrees of freedom for model", $

"degrees of freedom for error", $

"total (corrected) degrees of freedom", $

"sum of squares for model", $

"sum of squares for error", $

"total (corrected) sum of squares",$

"model mean square", $

"error mean square", $

"F-statistic", $

"p-value",$

"R-squared (in percent)", $

"adjusted R-squared (in percent)", $

"est. standard deviation of within error", $

"overall mean of y", $

"coefficient of variation (in percent)"]

ems_labels = ["Effect A and Error", $

"Effect A and Effect B", $

"Effect A and Effect A", $

"Effect B and Error", $

"Effect B and Effect B", $

"Error and Error"]

Plant Leaf Samples
1 1

2

3

3.28

3.52

2.88

3.09

3.48

2.80
2 1

2

3

2.46

1.87

2.19

2.44

1.92

2.19
3 1

2

3

2.77

3.74

2.55

2.66

3.44

2.55
4 1

2

3

3.78

4.07

3.31

3.87

4.12

3.31

238 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

components_labels = ["degrees of freedom for A", $

"sum of squares for A", $

"mean square of A", $

"F-statistic for A", $

"p-value for A", $

"Estimate of A", $

"Percent Variation Explained by A", $

"95% Confidence Interval Lower Limit for A", $

"95% Confidence Interval Upper Limit for A", $

"degrees of freedom for B", $

"sum of squares for B", $

"mean square of B", $

"F-statistic for B", $

"p-value for B", $

"Estimate of B", $

"Percent Variation Explained by B", $

"95% Confidence Interval Lower Limit for B", $

"95% Confidence Interval Upper Limit for B", $

"degrees of freedom for Error", $

"sum of squares for Error", $

"mean square of Error", $

"F-statistic for Error", $

"p-value for Error", $

"Estimate of Error", $

"Percent Explained by Error", $

"95% Confidence Interval Lower Limit for Error", $

"95% Confidence Interval Upper Limit for Error"]

means_labels = ["Grand mean", $

" A means 1", $

" A means 2", $

" A means 3", $

" A means 4", $

"AB means 1 1", $

"AB means 1 2", $

"AB means 1 3", $

"AB means 2 1", $

"AB means 2 2", $

"AB means 2 3", $

"AB means 3 1", $

"AB means 3 2", $

"AB means 3 3", $

ANOVANESTED Function 239

"AB means 4 1", $

"AB means 4 2", $

"AB means 4 3"]

PRINT, "p value of F statistic =", p

PRINT

PRINT, " * * * Analysis of Variance * * *"

FOR i = 0, 14 DO $

 PM, anova_labels(i), at(i), Format = "(A40, F20.5)"

PRINT

PRINT, " * * * Expected Mean Square Coefficients * *
*"

FOR i = 0, 5 DO $

 PM, ems_labels(i), ems(i), Format = "(A40, F20.2)"

PRINT

PRINT, " * * Analysis of Variance / Variance Components *
*"

k = 0

FOR i = 0, 2 DO BEGIN

 FOR j = 0, 8 DO BEGIN

 PM, components_labels(k), var_comp(i, j), $

 Format = "(A45, F20.5)"

 k = k + 1

 ENDFOR

ENDFOR

PRINT

PRINT, "means", Format = "(A20)"

FOR i = 0, 16 DO $

 PM, means_labels(i), y_means(i), Format ="(A20, F20.2)"

END

y = [3.28, 3.09, 3.52, 3.48, 2.88, 2.80, 2.46, 2.44, 1.87, $

 1.92, 2.19, 2.19, 2.77, 2.66, 3.74, 3.44, 2.55, 2.55, $

 3.78, 3.87, 4.07, 4.12, 3.31, 3.31]

n_levels = [4, 3, 2]

p = ANOVANESTED(3, 1, n_levels, y, Anova_Table = at, Ems=ems, $

 Y_Means = y_means, Var_Comp = var_comp)

print_results, p, at, ems, y_means, var_comp

240 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

p value of F statistic = 0.00000

 * * * Analysis of Variance * * *

 degrees of freedom for model 11.00000

 degrees of freedom for error 12.00000

 total (corrected) degrees of freedom 23.00000

 sum of squares for model 10.19054

 sum of squares for error 0.07985

 total (corrected) sum of squares 10.27040

 model mean square
0.92641

 error mean square
0.00665

 F-statistic
139.21599

 p-value
0.00000

 R-squared (in percent) 99.22248

 adjusted R-squared (in percent) 98.50976

 est. standard deviation of within error 0.08158

 overall mean of y
3.01208

 coefficient of variation (in percent) 2.70826

 * * * Expected Mean Square Coefficients * * *

 Effect A and Error
1.00

 Effect A and Effect B
2.00

 Effect A and Effect A
6.00

 Effect B and Error
1.00

 Effect B and Effect B
2.00

 Error and Error
1.00

 * * Analysis of Variance / Variance Components * *

 degrees of freedom for A
3.00000

 sum of squares for A
7.56034

ANOVANESTED Function 241

 mean square of A
2.52011

 F-statistic for A
7.66516

 p-value for A
0.00973

 Estimate of A
0.36522

 Percent Variation Explained by A
68.53015

 95% Confidence Interval Lower Limit for A
0.03955

 95% Confidence Interval Upper Limit for A
5.78674

 degrees of freedom for B
8.00000

 sum of squares for B
2.63020

 mean square of B
0.32878

 F-statistic for B
49.40642

 p-value for B
0.00000

 Estimate of B
0.16106

Percent Variation Explained by B 30.22121

95% Confidence Interval Lower Limit for B 0.06967

95% Confidence Interval Upper Limit for B 0.60042

degrees of freedom for Error 12.00000

sum of squares for Error 0.07985

mean square of Error 0.00665

F-statistic for Error NaN

p-value for Error NaN

Estimate of Error 0.00665

Percent Explained by Error 1.24864

95% Confidence Interval Lower Limit for Error 0.00342

95% Confidence Interval Upper Limit for Error 0.01813

 means

 Grand mean 3.01

 A means 1 3.17

 A means 2 2.18

242 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

 A means 3 2.95

 A means 4 3.74

 AB means 1 1 3.18

 AB means 1 2 3.50

 AB means 1 3 2.84

 AB means 2 1 2.45

 AB means 2 2 1.89

 AB means 2 3 2.19

 AB means 3 1 2.72

 AB means 3 2 3.59

 AB means 3 3 2.55

 AB means 4 1 3.82

 AB means 4 2 4.10

 AB means 4 3 3.31

ANOVABALANCED Function
Analyzes a balanced complete experimental design for a fixed, random, or
mixed model.

Usage

result = ANOVABALANCED(n_levels, y, n_random, idx_rand_fct,
n_fct_per_eff, idx_fct_per_eff)

Input Parameters

n_levels — One-dimensional array containing the number of levels for each of
the factors.

y — One-dimensional array containing the responses. y must not contain NaN
(not a number) for any of its elements, i.e., missing values are not allowed.

n_random — For positive n_random, |n_random| is the number of random fac-
tors. For negative n_random, |n_random| is the number of random effects
(sources of variation).

idx_rand_fct — One-dimensional index array of length |n_random| containing
either the factor numbers to be considered random (for n_random positive) or
containing the effect numbers to be considered random (for n_random nega-
tive).

n_fct_per_eff — One-dimensional array containing the number of factors asso-

ANOVABALANCED Function 243

ciated with each effect in the model.

idx_fct_per_eff — One-dimensional index array of length
N_ELEMENTS(n_fct_per_effect). The first n_fct_per_eff(0) elements give the
factor numbers in the first effect. The next n_fct_per_eff(1) elements give the
factor numbers in the second effect. The last
n_fct_per_eff(N_ELEMENTS(n_fct_per_eff)) elements give the factor numbers
in the last effect. Main effects must appear before their interactions. In general,
an effect E cannot appear after an effect F if all of the indices for E appear also
in F.

Returned Value

result — The p-value for the F-statistic.

Input Keywords

Double — If present and nonzero, then double precision is used.

Confidence — Confidence level for two-sided interval estimates on the vari-
ance components, in percent. Confidence percent confidence intervals are
computed, hence, Confidence must be in the interval [0.0, 100.0]. Confidence
often will be 90.0, 95.0, or 99.0. For one-sided intervals with confidence level
α, α in the interval [50.0, 100.0], set Confidence = 100.0 - 2.0 * (100.0 – α).

Default: Confidence = 95.0

Model — Model Option

For the Scheffe model, effects corresponding to interactions of fixed and ran-
dom factors have their sum over the subscripts corresponding to fixed factors
equal to zero. Also, the variance of a random interaction effect involving some
fixed factors has a multiplier for the associated variance component that in-
volves the number of levels in the fixed factors. The Searle model has no sum-
mation restrictions on the random interaction effects and has a multiplier of one
for each variance component.

Default: Model = 0

Model Description

0 Searle model

1 Scheffe model

244 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

Output Keywords

Anova_Table — Named variable into which an array of size 15 containing the
analysis of variance table is stored. The analysis of variance statistics are as fol-
lows:

Var_Comp — Named variable into which an array of length
N_ELEMENTS(n_fct_per_eff) + 1, by 9 array containing statistics relating to
the particular variance components or effects in the model and the error is
stored. Rows of Var_Comp correspond to the rows of
N_ELEMENTS(n_fct_per_eff) effects plus error.

Element Analysis of Variance Statistics

0 Degrees of freedom for the model

1 Degrees of freedom for error

2 Total (corrected) degrees of freedom

3 Sum of squares for the model

4 Sum of squares for error

5 Total (corrected) sum of squares

6 Model mean square

7 Error mean square

8 Overall F-statistic

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of y

14 coefficient of variation (in percent)

ANOVABALANCED Function 245

Columns 6 through 9 contain NaN (not a number) if the effect is fixed, i.e., if
there is no variance component to be estimated. If the variance component esti-
mate is negative, columns 8 and 9 contain NaN.

Ems — Named variable into which a one-dimensional array of length
((N_ELEMENTS(n_fct_per_eff) + 1)*(N_ELEMENTS(n_fct_per_eff) + 2)) / 2
containing expected mean square coefficients is stored. Suppose the effects are
A, B, and AB. The ordering of the coefficients in Ems is as follows:

Y_Means — Named variable into which a one-dimensional array of length

Column Description

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F -statistic

5 p-value for F test

6 Variance component estimate

7 Percent of variance of y explained by random effect

8 Lower endpoint for a confidence interval on the
variance component

9 Upper endpoint for a confidence interval on the
variance component

Error AB B A

A Ems(0) Ems(1) Ems(2) Ems(3)

B Ems(4) Ems(5) Ems(6)

AB Ems(7) Ems(8)

Error Ems(9)

246 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

(n_levels(0) + 1) * (n_levels (1) + 1) * . . . * (n_levels (n-1) + 1) containing the
subgroup means is stored. Suppose the factors are A, B, and C. The ordering of
the means is grand mean, A means, B means, C means, AB means, AC means,
BC means, and ABC means.

Discussion

Function ANOVABALANCED analyzes a balanced complete experimental de-
sign for a fixed, random, or mixed model. The analysis includes an analysis of
variance table, and computation of subgroup means and variance component es-
timates. A choice of two parameterizations of the variance components for the
model can be made.

Scheffé (1959, pages 274−289) discusses the parameterization for Model = 1.
For example, consider the following model equation with fixed factor A and
random factor B:

yijk = µ + αi + bj + cij + eijk i = 1, 2, ... , a; j = 1, 2, ... , b; k = 1, 2, ... , n

The fixed effects αi’s are subject to the restriction

the bj’s are random effects identically and independently distributed

cij are interaction effects each distributed

and are subject to the restrictions

∑ ==i
a

i1 0α

N B(,)0 2σ

N
a

a AB(,)0
1 2− σ

∑ = ==i
a

ijc j b1 0 1 2for , , ,K

ANOVABALANCED Function 247

and the eijk’s are errors identically and independently distributed N(0, σ2). In
general, interactions of fixed and random factors have sums over subscripts cor-
responding to fixed factors equal to zero. Also in general, the variance of a ran-
dom interaction effect is the associated variance component times a product of
ratios for each fixed factor in the random interaction term. Each ratio depends
on the number of levels in the fixed factor. In the earlier example, the random
interaction AB has the ratio (a – 1)/a as a multiplier of

and

In a three-way crossed classification model, an ABC interaction effect with A
fixed, B random, and C fixed would have variance

Searle (1971, pages 400−401) discusses the parameterization for Model = 0.
This parameterization does not have the summation restrictions on the effects
corresponding to interactions of fixed and random factors. Also, the variance of
each random interaction term is the associated variance component, i.e., with-
out the multiplier. This parameterization is also used with unbalanced data,
which is one reason for its popularity with balanced data also. In the earlier ex-
ample,

Searle (1971, pages 400−404) compares these two parameterizations. Hocking
(1973) considers these different parameterizations and concludes they are equiv-
alent because they yield the same variance-covariance structure for the respons-
es. Differences in covariances for individual terms, differences in expected

σ AB
2

var(y
a

aijk B AB) = + − +σ σ σ2 2 21

()()a c

ac ABC
− −1 1 2σ

var yijk B AB� � = + +~ ~σ σ σ2 2 2

248 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

mean square coefficients and differences in F tests are just a consequence of the
definition of the individual terms in the model and are not caused by any funda-
mental differences in the models. For the earlier two-way model, Hocking states
that the relations between the two parameterizations of the variance compo-
nents are

where

are the variance components in the parameterization with Model = 0.

The computations for degrees of freedom and sums of squares are the same re-
gardless of the option specified by Model. ANOVABALANCED first com-
putes degrees of freedom and sum of squares for a full factorial design. Degrees
of freedom for effects in the factorial design that are missing from the specified
model are pooled into the model effect containing the fewest subscripts but still
containing the factorial effect. If no such model effect exists, the factorial ef-
fect is pooled into error. If more than one such effect exists, a terminal error
message is issued indicating a misspecified model.

The analysis of variance method is used for estimating the variance compo-
nents. This method solves a linear system in which the mean squares are set to
the expected mean squares. A problem that Hocking (1985, pages 324−330) dis-
cusses is that this method can yield a negative variance component estimate.
Hocking suggests a diagnostic procedure for locating the cause of the negative
estimate. It may be necessary to re-examine the assumptions of the model.

The percentage of variation explained by each random effect is computed (out-
put in Var_Comp element 7) as the variance of the associated random effect di-
vided by the variance of y. The two parameterizations can lead to different
values because of the different definitions of the individual terms in the model.
For example, the percentage associated with the AB interaction term in the earli-

σ σ σ

σ σ

B B AB

AB AB

a
2 2 2

2 2

1= +

=

~ ~

~

σ σ σ

σ σ

B B AB

AB AB

a
2 2 2

2 2

1= +

=

~ ~

~

~ ~σ σB AB
2 2 and

ANOVABALANCED Function 249

er two-way mixed model is computed for Model = 1 using the formula

while for the parameterization Model = 0, the percentage is computed using the
formula

In each case, the variance components are replaced by their estimates (stored in
Var_Comp element 6).

Confidence intervals on the variance components are computed using the meth-
od discussed by Graybill (1976, Theorem 15.3.5, page 624, and Note 4, page
620).

Example

An analysis of a generalized randomized block design is performed using data
discussed by Kirk (1982, Table 6.10-1, pages 293−297). The model is

yijk = µ + αi + bj + cij + eijk i = 1, 2, 3, 4; j = 1, 2, 3, 4; k = 1, 2

where yijk is the response for the k-th experimental unit in block j with treat-
ment i; the αi’s are the treatment effects and are subject to the restriction

the bj’s are block effects identically and independently distributed

% variation(AB|Model = 1) =

−

+ − +

a

a
a

a

AB

B AB

1

1

2

2 2 2

σ

σ σ σ

% variation(AB|Model = 0) =
+ +

~

~ ~
σ

σ σ σ
AB

B AB

2

2 2 2

∑ ==i i1
2 0α

N B(,)0 2σ

250 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

cij are interaction effects each distributed

and are subject to the restrictions

and the eijk’s are errors, identically and independently distributed N(0, σ2). The
interaction effects are assumed to be distributed independently of the errors.

N AB(,)0 3
4

2σ

∑ = ==i ijc j1
4 0 1 2 3 4for , , ,

ANOVABALANCED Function 251

The data are given in the following table:

PRO print_results, p, at, ems, y_means, var_comp

anova_labels = ["degrees of freedom for model", $

 "degrees of freedom for error", $

 "total (corrected) degrees of freedom", $

 "sum of squares for model", $

 "sum of squares for error", $

 "total (corrected) sum of squares",$

 "model mean square", $

 "error mean square", $

 "F-statistic", $

 "p-value",$

 "R-squared (in percent)", $

 "adjusted R-squared (in percent)", $

 "est. standard deviation of within error", $

 "overall mean of y", $

 "coefficient of variation (in percent)"]

ems_labels = ["Effect A and Error", $

 "Effect A and Effect AB", $

 "Effect A and Effect B", $

 "Effect A and Effect A", $

 "Effect B and Error", $

 "Effect B and Effect AB", $

 "Effect B and Effect B", $

 "Effect AB and Error", $

 "Effect AB and Effect AB", $

 "Error and Error"]

components_labels = ["degrees of freedom for A", $

 "sum of squares for A", $

 "mean square of A", $

 "F-statistic for A", $

 "p-value for A", $

 "Estimate of A", $

Block

Treatment 1 2 3 4
1 3, 6 3, 1 2, 2 3, 2
2 4, 5 4, 2 3, 4 3, 3
3 7, 8 7, 5 6, 5 6, 6
4 7, 8 9, 10 10, 9 8, 11

252 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

 "Percent Variation Explained by A", $

 "95% Confidence Interval Lower Limit for A", $

 "95% Confidence Interval Upper Limit for A", $

 "degrees of freedom for B", $

 "sum of squares for B", $

 "mean square of B", $

 "F-statistic for B", $

 "p-value for B", $

 "Estimate of B", $

 "Percent Variation Explained by B", $

 "95% Confidence Interval Lower Limit for B", $

 "95% Confidence Interval Upper Limit for B", $

 "degrees of freedom for AB", $

 "sum of squares for AB", $

 "mean square of AB", $

 "F-statistic for AB", $

 "p-value for AB", $

 "Estimate of AB", $

 "Percent Variation Explained by AB", $

 "95% Confidence Interval Lower Limit for AB", $

 "95% Confidence Interval Upper Limit for AB", $

 "degrees of freedom for Error", $

 "sum of squares for Error", $

 "mean square of Error", $

 "F-statistic for Error", $

 "p-value for Error", $

 "Estimate of Error", $

 "Percent Explained by Error", $

 "95% Confidence Interval Lower Limit for Error", $

 "95% Confidence Interval Upper Limit for Error"]

means_labels = ["Grand mean", $

 " A means 1", $

 " A means 2", $

 " A means 3", $

 " A means 4", $

 " B means 1", $

 " B means 2", $

 " B means 3", $

 " B means 4", $

 "AB means 1 1", $

 "AB means 1 2", $

ANOVABALANCED Function 253

 "AB means 1 3", $

 "AB means 1 4", $

 "AB means 2 1", $

 "AB means 2 2", $

 "AB means 2 3", $

 "AB means 2 4", $

 "AB means 3 1", $

 "AB means 3 2", $

 "AB means 3 3", $

 "AB means 3 4", $

 "AB means 4 1", $

 "AB means 4 2", $

 "AB means 4 3", $

 "AB means 4 4"]

PRINT, "p value of F statistic =", p

PRINT

PRINT, " * * * Analysis of Variance * * *"

FOR i = 0, 14 DO $

 PM, anova_labels(i), at(i), Format = "(A40, F20.5)"

PRINT

PRINT, " * * * Expected Mean Square Coefficients * *
*"

FOR i = 0, 9 DO $

 PM, ems_labels(i), ems(i), Format = "(A40, F20.2)"

PRINT

PRINT, " * * Analysis of Variance / Variance Components *
*"

k = 0

FOR i = 0, 3 DO BEGIN

 FOR j = 0, 8 DO BEGIN

 PM, components_labels(k), var_comp(i, j), $

 Format = "(A45, F20.5)"

 k = k + 1

 ENDFOR

ENDFOR

PRINT

PRINT, "means", Format = "(A20)"

FOR i = 0, 24 DO $

254 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

 PM, means_labels(i), y_means(i), Format ="(A20, F20.2)"

END

y = [3.0, 6.0, 3.0, 1.0, 2.0, 2.0, 3.0, 2.0, 4.0, 5.0, 4.0, $

 2.0, 3.0, 4.0, 3.0, 3.0, 7.0, 8.0, 7.0, 5.0, 6.0, 5.0, $

 6.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 9.0, 8.0, 11.0]

n_levels = [4, 4, 2]

indrf = [2, 3]

nfef = [1, 1, 2]

indef = [1, 2, 1, 2]

p = ANOVABALANCED(n_levels, y, 2, indrf, nfef, indef, $

 Anova_Table = at, Ems = ems, $

 Y_Means = y_means, Var_Comp = var_comp)

print_results, p, at, ems, y_means, var_comp

% ANOVABALANCED: Note: STAT_ENDPNTS_NEGATIVE

One or more endpoints are negative and are set to zero.

p value of F statistic = 4.94719e-06

 * * * Analysis of Variance * * *

 degrees of freedom for model 15.00000

 degrees of freedom for error 16.00000

 total (corrected) degrees of freedom 31.00000

 sum of squares for model 216.50000

 sum of squares for error 19.00000

 total (corrected) sum of squares 235.50000

 model mean square
14.43333

 error mean square
1.18750

 F-statistic
12.15439

 p-value
0.00000

 R-squared (in percent) 91.93206

 adjusted R-squared (in percent) 84.36836

 est. standard deviation of within error 1.08972

 overall mean of y
5.37500

 coefficient of variation (in percent) 20.27395

ANOVABALANCED Function 255

 * * * Expected Mean Square Coefficients * * *

 Effect A and Error
1.00

 Effect A and Effect AB
2.00

 Effect A and Effect B
0.00

 Effect A and Effect A
8.00

 Effect B and Error
1.00

 Effect B and Effect AB
2.00

 Effect B and Effect B
8.00

 Effect AB and Error
1.00

 Effect AB and Effect AB
2.00

 Error and Error
1.00

 * * Analysis of Variance / Variance Components * *

 degrees of freedom for A
3.00000

 sum of squares for A
194.50000

 mean square of A
64.83334

 F-statistic for A
32.87324

 p-value for A
0.00004

 Estimate of A
NaN

 Percent Variation Explained by A
NaN

 95% Confidence Interval Lower Limit for A
NaN

 95% Confidence Interval Upper Limit for A
NaN

 degrees of freedom for B
3.00000

 sum of squares for B
4.25000

256 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

 mean square of B
1.41667

 F-statistic for B
0.71831

 p-value for B
0.56566

 Estimate of B
-0.06944

 Percent Variation Explained by B
0.00000

 95% Confidence Interval Lower Limit for B
NaN

 95% Confidence Interval Upper Limit for B
NaN

 degrees of freedom for AB
9.00000

 sum of squares for AB
17.75000

 mean square of AB
1.97222

 F-statistic for AB
1.66082

 p-value for AB
0.18016

 Estimate of AB
0.39236

 Percent Variation Explained by AB
24.83516

 95% Confidence Interval Lower Limit for AB
0.00000

 95% Confidence Interval Upper Limit for AB
2.75803

 degrees of freedom for Error
16.00000

 sum of squares for Error
19.00000

 mean square of Error
1.18750

 F-statistic for Er-
ror NaN

 p-value for Er-
ror NaN

 Estimate of Error
1.18750

 Percent Explained by Error

ANOVABALANCED Function 257

75.16483

95% Confidence Interval Lower Limit for Error
0.65868

95% Confidence Interval Upper Limit for Error
2.75057

 means

 Grand mean 5.38

 A means 1 2.75

 A means 2 3.50

 A means 3 6.25

 A means 4 9.00

 B means 1 6.00

 B means 2 5.12

 B means 3 5.12

 B means 4 5.25

 AB means 1 1 4.50

 AB means 1 2 2.00

 AB means 1 3 2.00

 AB means 1 4 2.50

 AB means 2 1 4.50

 AB means 2 2 3.00

 AB means 2 3 3.50

 AB means 2 4 3.00

 AB means 3 1 7.50

 AB means 3 2 6.00

 AB means 3 3 5.50

 AB means 3 4 6.00

 AB means 4 1 7.50

 AB means 4 2 9.50

 AB means 4 3 9.50

 AB means 4 4 9.50

258 Chapter 4: Analysis of Variance PV-WAVE:IMSL Statistics Reference

; Add Outliners

x(0, 1) = 100.0

x(3, 4) = 100.0

x(99, 2) = -100.0

p_cov = POOLED_COV(x, n_groups, Idx_Vars = idxv, $

 Idx_Cols = idxc)

PM, p_cov, Title = "Pooled Cavariance with Outliners"

Pooled Cavariance with Outliners

 60.4264 0.304244 0.127488 -1.55551

 0.304244 70.5257 0.167135 -0.171791

 0.127488 0.167135 0.185188 0.0684639

 -1.55551 -0.171791 0.0684639 66.3798

r_cov = ROBUST_COV(x, n_groups, Idx_Vars = idxv, $

 Idx_Cols = idxc, Percentage = percent-
age)

PM, r_cov, Title = "Robust Covariance with Outliners"

Robust Covariance with Outliners

 0.255521 0.0876029 0.155279 0.0359198

 0.0876029 0.112674 0.0545391 0.0322426

 0.155279 0.0545391 0.172263 0.0412149

 0.0359198 0.0322426 0.0412149 0.0424182

259

CHAPTER

5

Categorical and Discrete
Data Analysis

Contents of Chapter

Statistics in the Two-Way Contingency Table

Two-way contingency
table analysis........................... CONTINGENCY Function

Exact probabilities in a table;
total enumeration...................... EXACT_ENUM Function

Exact probabilities in a
table EXACT_NETWORK Function

Generalized Categorical Models

Generalized linear models CAT_GLM Function

Introduction
Routine CONTINGENCY computes many statistics of interest in a two-way
table. Statistics computed by this routine includes the usual chi-squared statis-
tics, measures of association, Kappa, and many others. Exact probabilities for
two-way tables can be computed by EXACT_ENUM , but this routine uses the
total enumeration algorithm and, thus, often uses orders of magnitude more

260 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

computer time than EXACT_NETWORK which computes the same probabili-
ties by use of the network algorithm (but can still be quite expensive).

The routine CAT_GLM in the second section is concerned with generalized lin-
ear models (see McCullagh and Nelder 1983) in discrete data. This routine can
be used to compute estimates and associated statistics in probit, logistic, mini-
mum extreme value, Poisson, negative binomial (with known number of
successes), and logarithmic models. Classification variables as well as weights,
frequencies and additive constants may be used so that general linear models
can be fit. Residuals, a measure of influence, the coefficient estimates, and other
statistics are returned for each model fit. When infinite parameter estimates are
required, extended maximum likelihood estimation may be used. Log-linear
models can be fit in CAT_GLM through the use of Poisson regression models.
Results from Poisson regression models involving structural and sampling zeros
will be identical to the results obtained from the log-linear model routines but
will be fit by a quasi-Newton algorithm rather than through iterative propor-
tional fitting.

CONTINGENCY Function 261

CONTINGENCY Function
Performs a chi-squared analysis of a two-way contingency table.

Usage

result = CONTINGENCY(table)

Input Parameters

table — Two-dimensional array containing the observed counts in the contin-
gency table.

Returned Value

result — Pearson chi-squared p-value for independence of rows and columns.

Input Keywords

Double — If present and nonzero, double precision is used.

Output Keywords

Chi_Sq_Test — Named variable into which the three-element array containing
statistics associated with the chi-squared tests is stored. The first element con-
tains the degrees of freedom for the chi-squared tests associated with the table,
the second element contains the Pearson chi-squared test statistic, and the third
element contains the probability of a larger Pearson chi-squared, p-value.

Lrt — Named variable into which the three-element array containing statistics
associated with the likelihood ratio G-squared tests is stored. The first element
contains the degrees of freedom for the chi-squared tests associated with the
table, the second element contains the likelihood ratio G2 (chi-squared), and the
third element contains the probability of a larger G2.

Expected — Named variable into which the two-dimensional array of size
(n_rows+1) by (n_columns+1) containing the expected values of each cell in the
table is stored, where n_rows=(N_ELEMENTS(table(*,0)) and
n_columns=(N_ELEMENTS(table(0,*)). The expected values are computed
under the null hypothesis and stored in the first n_rows rows and n_columns
columns. The marginal totals are in the last row and column.

262 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

Chi_Sq_Contrib — Named variable into which a two-dimensional array of size
(n_rows+1) by (n_columns+1) containing the contributions for each cell in the
table is stored. The contributions to chi-squared for each cell in the table is in
the first n_rows rows and n_columns columns. The last row and column contain
the total contribution to chi-squared for that row or column.

Chi_Sq_Stats — Named variable into which an array of length 5 containing
chi-squared statistics associated with this contingency table is stored. The last
three elements are based on Pearson’s chi-squared statistic (see Chi_Sq_Test).
The chi-squared statistics are given as follows:

Table_Stats — Named variable into which a two-dimensional array of size 23 x
5 containing statistics associated with this table is stored. Each row corre-
sponds to a statistic.

Element Chi-squared Statistics

0 exact mean

1 exact standard deviation

2 phi

3 contingency coefficient

4 Cramer’s V

Row Statistic

0 Gamma

1 Kendall’s τb

2 Stuart’s τc

3 Somers’ D for rows (given columns)

4 Somers’ D for columns (given rows)

5 product moment correlation

6 Spearman rank correlation

7 Goodman and Kruskal τ for rows (given columns)

8 Goodman and Kruskal τ for columns (given rows)

9 uncertainty coefficient U (symmetric)

CONTINGENCY Function 263

If a statistic cannot be computed or if some value is not relevant for the com-
puted statistic, the entry is NaN (Not a Number). The columns are as follows:

In the McNemar tests, Column 0 contains the statistic, Column 1 contains the
chi-squared degrees of freedom, Column 3 contains the exact p-value (1 degree
of freedom only), and Column 4 contains the chi-squared asymptotic p-value.
The Kruskal-Wallis test is the same except no exact p-value is computed.

10 uncertainty Ur | c (rows)

11 uncertainty U c | r (columns)

12 optimal prediction λ (symmetric)

13 optimal prediction λ r | c (rows)

14 optimal prediction λ c | r (columns)

15 optimal prediction λ r | c (rows)

16 optimal prediction λ c | r (columns)

17 test for linear trend in row probabilities if
n_rows = 2.
If n_rows is not 2, a test for linear trend in column
probabilities if n_columns = 2.

18 Kruskal-Wallis test for no-row effect

19 Kruskal-Wallis test for no-column effect

20 kappa (square tables only)

21 McNemar test of symmetry (square tables only)

22 McNemar one degree of freedom test of symme-
try (square tables only)

Column Value

0 estimated statistic

1 standard error for any parameter value

2 standard error under the null hypothesis

3 t value for testing the null hypothesis

4 p-value of the test in column 3

Row Statistic

264 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

Discussion

Function CONTINGENCY computes statistics associated with an r x c contin-
gency table. The function computes the chi-squared test of independence,
expected values, contributions to chi-squared, row and column marginal totals,
some measures of association, correlation, prediction, uncertainty, the McNe-
mar test for symmetry, a test for linear trend, the odds and the log odds ratio,
and the kappa statistic (if the appropriate keywords are selected).

Notation

Let xij denote the observed cell frequency in the ij cell of the table and n denote
the total count in the table. Let pij = pi·p·j denote the predicted cell probabili-
ties under the null hypothesis of independence, where pi· and p·j are the row
and column marginal relative frequencies. Next, compute the expected cell
counts as eij = npij.

Also required in the following are auv and buv for u, where ν = 1, ..., n. Let (rs,
cs) denote the row and column response of observation s. Then, auv = 1, 0, or –
1, depending on whether ru < rv , ru = rv , or ru > rv. The buv similarly defined
in terms of the cs variables.

Chi-squared Statistic

For each cell in the table, the contribution to χ2 is given as (xij – eij)
2/eij. The

Pearson chi-squared statistic (denoted χ2) is computed as the sum of the cell
contributions to chi-squared. It has (r – 1) (c – 1) degrees of freedom and tests
the null hypothesis of independence, i.e., H0:pij = pi·p·j. The null hypothesis is
rejected if the computed value of χ2 is too large.

The maximum likelihood equivalent of χ2, G2 is computed as follows:

G2 is asymptotically equivalent to χ2 and tests the same hypothesis with the
same degrees of freedom.

Measures Related to Chi-squared (Phi, Contingency
Coefficient, and Cramer’s V)

There are three measures related to chi-squared that do not depend on sample
size:

G2 2 xij ln xij npij⁄()
,

∑–=

CONTINGENCY Function 265

• phi,

• contingency coefficient,

• Cramer’s V,

Since these statistics do not depend on sample size and are large when the
hypothesis of independence is rejected, they can be thought of as measures of
association and can be compared across tables with different sized samples.
While both P and V have a range between 0.0 and 1.0, the upper bound of P is
actually somewhat less than 1.0 for any given table (see Kendall and Stuart
1979, p. 587). The significance of all three statistics is the same as that of the χ2
statistic, Chi_Sq_Test.

The distribution of the χ2 statistic in finite samples approximates a chi-squared
distribution. To compute the exact mean and standard deviation of the χ2 statis-
tic, Haldane (1939) uses the multinomial distribution with fixed-table marginals.
The exact mean and standard deviation generally differ little from the mean and
standard deviation of the associated chi-squared distribution.

Standard Errors and p-values for Some Measures
of Association

In Columns 1 through 4 of statistics, estimated standard errors and asymptotic
p-values are reported. Estimates of the standard errors are computed in two
ways. The first estimate, in Column 1 of the array table_stats, is asymptotically
valid for any value of the statistic. The second estimate, in Column 2 of the
array, is only correct under the null hypothesis of no association. The z-scores
in Column 3 of statistics are computed using this second estimate of the stan-
dard errors. The p-values in column 4 are computed from this z-score. See
Brown and Benedetti (1977) for a discussion and formulas for the standard
errors in Column 2.

Measures of Association for Ranked Rows and Columns

The measures of association, φ, P, and V, do not require any ordering of the row
and column categories. Function CONTINGENCY also computes several mea-
sures of association for tables in which the row and column categories
correspond to ranked observations. Two of these tests, the product moment cor-
relation and the Spearman correlation, are correlation coefficients computed
using assigned scores for the row and column categories. The cell indices are
used for the product-moment correlation, while the average of the tied ranks of

φ χ2
n⁄=

P χ2
n χ2+()⁄=

V χ2
n min r c,()()⁄=

266 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

the row and column marginals is used for the Spearman rank correlation. Other
scores are possible.

Gamma, Kendall’s τb, Stuart’s τc, and Somers’ D are measures of association
that are computed like a correlation coefficient in the numerator. In all these
measures, the numerator is computed as the “covariance” between the auv vari-
ables and buv variables defined above, i.e., as follows:

Recall that auv and buv can take values –1, 0, or 1. Since the product auvbuv = 1
only if auv and buv are both 1 or are both –1, it is easy to show that this “covari-
ance” is twice the total number of agreements minus the number of
disagreements, where a disagreement occurs when auvbuv = –1.

Kendall’s τb is computed as the correlation between the auv variables and buv
variables (see Kendall and Stuart 1979, p. 593). In a rectangular table (r ≠ c),
Kendall’s τb cannot be 1.0 (if all marginal totals are positive). For this reason,
Stuart suggested a modification to the denominator of τ in which the denomina-
tor becomes the largest possible value of the “covariance.” This maximizing
value is approximately n2m / (m – 1), where m = min(r, c). Stuart’s τc uses this
approximate value in its denominator. For large n,

.

Gamma can be motivated in a slightly different manner. Because the “covari-
ance” of the auv variables and the buv variables can be thought of as twice the
number of agreements minus the disagreements, 2(A – D), where A is the num-
ber of agreements and D is the number of disagreements, Gamma is motivated
as the probability of agreement minus the probability of disagreement, given
that either agreement or disagreement occurred. This is shown as γ = (A – D) /
(A + D).

Two definitions of Somers’ D are possible, one for rows and a second for col-
umns. Somers’ D for rows can be thought of as the regression coefficient for
predicting auv from buv. Moreover, Somer’s D for rows is the probability of
agreement minus the probability of disagreement, given that the column vari-
able, buv, is not 0. Somers’ D for columns is defined in a similar manner.

A discussion of all of the measures of association in this section can be found
in Kendall and Stuart (1979, p. 592).

auvbuv∑∑

τc mτb m 1–()⁄≈

CONTINGENCY Function 267

Measures of Prediction and Uncertainty

Optimal Prediction Coefficients: The measures in this section do not require
any ordering of the row or column variables. They are based entirely upon
probabilities. Most are discussed in Bishop et al. (1975, p. 385).

Consider predicting (or classifying) the column for a given row in the table.
Under the null hypothesis of independence, choose the column with the highest
column marginal probability for all rows. In this case, the probability of mis-
classification for any row is 1 minus this marginal probability. If independence
is not assumed, then within each row, choose the column with the highest row-
conditional probability. The probability of misclassification for the row becomes
1 minus this conditional probability.

Define the optimal prediction coefficient λc | r for predicting columns from rows
as the proportion of the probability of misclassification that is eliminated
because the random variables are not independent. It is estimated by

where m is the index of the maximum estimated probability in the row (pim) or
row margin (p·m). A similar coefficient is defined for predicting the rows from
the columns. The symmetric version of the optimal prediction λ is obtained by
summing the numerators and denominators of λr | c and λc | r , then dividing.
Standard errors for these coefficients are given in Bishop et al. (1975, p. 388).

A problem with the optimal prediction coefficients λ is that they vary with the
marginal probabilities. One way to correct this is to use row-conditional proba-
bilities. The optimal prediction λ* coefficients are defined as the corresponding
λ coefficients in which first the row (or column) marginals are adjusted to the
same number of observations. This yields

where i indexes the rows, j indexes the columns, and p j | i is the (estimated)
probability of column j given row i. λ*

r | c is similarly defined.

λc r

1 p•m–() 1 pim

i

∑–

–

1 p•m–
--=

λc r
*

maxj pj i maxj pj i

i

∑

–

i

∑

R max j pj i∑

–

--=

268 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

Goodman and Kruskal τ: A second kind of prediction measure attempts to
explain the proportion of the explained variation of the row (column) measure
given the column (row) measure. Define the total variation in the rows as
follows:

Note that this is 1 / (2n) times the sums of squares of the auv variables.

With this definition of variation, the Goodman and Kruskal τ coefficient for
rows is computed as the reduction of the total variation for rows accounted for
by the columns, divided by the total variation for the rows. To compute the
reduction in the total variation of the rows accounted for by the columns, note
that the total variation for the rows within column j is defined as follows:

The total variation for rows within columns is the sum of the qj variables. Con-
sistent with the usual methods in the analysis of variance, the reduction in the
total variation is given as the difference between the total variation for rows and
the total variation for rows within the columns.

Goodman and Kruskal’s τ for columns is similarly defined. See Bishop et al.
(1975, p. 391) for the standard errors.

Uncertainty Coefficients: The uncertainty coefficient for rows is the increase
in the log-likelihood that is achieved by the most general model over the inde-
pendence model, divided by the marginal log-likelihood for the rows. This is
given by the following equation:

The uncertainty coefficient for columns is similarly defined. The symmetric
uncertainty coefficient contains the same numerator as Ur | c and Uc | r but aver-
ages the denominators of these two statistics. Standard errors for U are given in
Brown (1983).

Kruskal-Wallis: The Kruskal-Wallis statistic for rows is a one-way analysis-of-
variance-type test that assumes the column variable is monotonically ordered. It

n 2⁄ xi•
2∑

2(n)⁄–

qj x•j 2⁄ xij
2∑

2(xi•)⁄–=

U r c

xijlog xi•x•j nxij⁄()
i j,
∑

xi•log xi• n⁄()∑
--=

CONTINGENCY Function 269

tests the null hypothesis that no row populations are identical, using average
ranks for the column variable. The Kruskal-Wallis statistic for columns is simi-
larly defined. Conover (1980) discusses the Kruskal-Wallis test.

Test for Linear Trend: When there are two rows, it is possible to test for a lin-
ear trend in the row probabilities if it is assumed that the column variable is
monotonically ordered. In this test, the probabilities for row 1 are predicted by
the column index using weighted simple linear regression. This slope is given
by

where

is the average column index. An asymptotic test that the slope is zero may then
be obtained (in large samples) as the usual regression test of zero slope.

In two-column data, a similar test for a linear trend in the column probabilities
is computed. This test assumes that the rows are monotonically ordered.

Kappa: Kappa is a measure of agreement computed on square tables only. In
the kappa statistic, the rows and columns correspond to the responses of two
judges. The judges agree along the diagonal and disagree off the diagonal. Let

denote the probability that the two judges agree, and let

denote the expected probability of agreement under the independence model.
Kappa is then given by (p0 – pc) / (1 – pc).

McNemar Tests: The McNemar test is a test of symmetry in a square contin-
gency table. In other words, it is a test of the null hypothesis H0:θij = θji . The

β̂

x• j x1 j x•j x1•– n⁄⁄() j j–()
j

∑
x• j j j–()

2

∑
--=

j x•j j n⁄∑=

p0 xii n⁄∑=

pc eii n⁄∑=

270 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

multiple degrees-of-freedom version of the McNemar test with r(r – 1) / 2
degrees of freedom is computed as follows:

The single degree-of-freedom test assumes that the differences, xij – xji , are all
in one direction. The single degree-of-freedom test is more powerful than the
multiple degrees-of-freedom test when this is the case. The test statistic is given
as follows:

The exact probability can be computed by the binomial distribution.

Example 1

The following example, taken from Kendall and Stuart (1979), involves the dis-
tance vision in the right and left eyes. Output contains only the p-value.

table = [[821,116,72,43], [112,494,151,34], $
[85,145,583,106], [35,27,87,331]]

print, "P-Value ", CONTINGENCY(table)

P-Value 0.00000

Example 2

The following example, which illustrates the use of Kappa and McNemar tests,
uses the same distance vision data as the previous example. The available statis-
tics are obtained using keywords. First, a procedure is defined to output the
results.

PRO print_results, chi_sq_test, lrt, $
expected, chi_sq_contrib, chi_sq_stats, $
table_stats

PRINT, "Pearson Chi_Squared Statistics:"

PM, chi_sq_test(0), $

xij xji–()2

xij xji+()

<
∑

xij xji–()
i j<
∑

2

xij xji+()∑
--

CONTINGENCY Function 271

Title = "Degrees of Freedom"

PM, chi_sq_test(1), Title = "Chi-Squared"

PM, chi_sq_test(2), Title = "P-Value"

PRINT

PRINT, $
"Likelihood Ratio G-Squared " + $
"Statistics:"

PM, lrt(0), Title = "Degrees of Freedom"

PM, lrt(1), Title = "G-Squared"

PM, lrt(2), Title = "P-Value"

PRINT

PM, expected, Title = "Expected Values:"

PRINT

PM, chi_sq_contrib, $
Title = "Contributions to Chi-squared:"

PRINT

PM, chi_sq_stats, $
Title = "Chi-square Statistics:"

PRINT

PM, table_stats, Title = "Table Statistics:"

END

table = [[821,116,72,43], [112,494,151,34], $
[85,145,583,106], [35,27,87,331]]

p_value = CONTINGENCY(table, $
Chi_Sq_Test = chi_sq_test, $
Lrt = lrt, $
Expected = expected, $
Chi_Sq_Contrib = chi_sq_contrib, $
Chi_Sq_Stats = chi_sq_stats, $
Table_Stats = table_stats)

print_results, chi_sq_test, lrt, expected, $
chi_sq_contrib, chi_sq_stats, table_stats

Pearson Chi_Squared Statistics:

Degrees of Freedom

 9.00000

Chi-Squared

 3304.37

P-Value

 0.00000

Likelihood Ratio G-Squared Statistics:

Degrees of Freedom

272 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

 9.00000

G-Squared

 2781.02

P-Value

 0.00000

Expected Values:

 341.689 256.916 298.491 155.904 1053.00

 253.752 190.796 221.671 115.780 782.000

 289.771 217.879 253.136 132.215 893.000

 166.788 125.408 145.702 76.1012 514.000

 1052.00 791.000 919.000 480.000 3242.00

Contributions to Chi-squared:

 672.363 81.7416 152.696 93.7612 1000.56

 74.7802 481.835 26.5189 68.0768 651.211

 163.661 20.5287 429.849 15.4625 629.501

 91.8743 66.6263 10.8183 853.777 1023.10

 1002.68 650.732 619.882 1031.08 3304.37

Chi-square Statistics:

 9.00278

 4.24016

 1.00957

 0.710467

 0.582877

Table Statistics:

0.775704 0.0122983 0.0148632 52.1897 0.00000

0.642887 0.0122028 0.0123183 52.1897 0.00000

0.629265 0.0120573 NaN 52.1897 0.00000

0.641831 0.0122390 0.0122980 52.1897 0.00000

0.643945 0.0122152 0.0123385 52.1897 0.00000

0.692588 0.0127669 0.0172000 40.2669 0.00000

0.693882 0.0126566 0.0126942 54.6614 0.00000

0.341952 0.0122570 NaN NaN NaN

0.342993 0.0122165 NaN NaN NaN

0.317123 0.0110281 NaN NaN NaN

0.317811 0.0110453 NaN NaN NaN

0.316437 0.0110294 NaN NaN NaN

0.537337 0.0123718 NaN NaN NaN

0.537443 0.0125727 NaN NaN NaN

0.537232 0.0125851 NaN NaN NaN

0.550648 0.0135695 NaN NaN NaN

EXACT_ENUM Function 273

0.563587 0.0126838 NaN NaN NaN

 NaN NaN NaN NaN NaN

 1561.49 3.00000 NaN NaN 0.00000

 1563.03 3.00000 NaN NaN 0.00000

0.574419 0.0110873 0.0105673 54.3583 0.00000

 4.76249 6.00000 NaN NaN 0.574617

0.948667 1.00000 NaN 0.345904 0.330059

Warning Errors

STAT_DF_GT_30 — The degrees of freedom for Chi_Sq_Test are greater than
30. The exact mean, standard deviation, and the normal distribution function
should be used.

STAT_EXP_VALUES_TOO_SMALL — Some expected values are less than #.
Some asymptotic p-values may not be good.

STAT_PERCENT_EXP_VALUES_LT_5 — Twenty percent of the expected
values are calculated less than 5.

EXACT_ENUM Function
Computes exact probabilities in a two-way contingency table using the total
enumeration method.

Usage

result = EXACT_ENUM(table)

Input Parameters

table — Two-dimensional array containing the observed counts in the contin-
gency table.

Returned Value

result — The p-value for independence of rows and columns. The p-value rep-
resents the probability of a more extreme table where “extreme” is taken in the
Neyman-Pearson sense. The p-value is “two-sided”.

274 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

Input Keywords

Double — If present and nonzero, double precision is used.

Output Keywords

Prob_Table — Named variable into which the probability of the observed table
occurring, given that the null hypothesis of independent rows and columns is
true, is stored.

P_Value — Named variable into which the p-value for independence of rows
and columns is stored. The p-value represents the probability of a more extreme
table where “extreme” is taken in the Neyman-Pearson sense. The p-value is
“two-sided”.

The p-value is also returned in functional form (see Returned Value).

A table is more extreme if its probability (for fixed marginals) is less than or
equal to Prob_Table.

Error_Chk — Named variable into which the sum of the probabilities of all
tables with the same marginal totals is stored. Keyword Error_Chk should have
a value of 1.0. Deviation from 1.0 indicates numerical error.

Discussion

Function EXACT_ENUM computes exact probabilities for an r by c
contingency table for fixed row and column marginals (a marginal is the num-
ber
of counts in a row or column), where r = N_ELEMENTS(table(*,0)) and
c = N_ELEMENTS(table(0,*)). Let fij denote the count in row i and column j of a
table, and let fi• and f•j denote the row and column marginals. Under the hypoth-
esis of independence, the (conditional) probability of the fixed marginals of the
observed table is given by

where f•• is the total number of counts in the table. Pf corresponds to output
keyword Prob_Table.

P
f f

f f
f

i
i

r

j
j

c

ij
j

c

i

r=
•

=
•

=

••
==

∏ ∏

∏∏

! !

! !

1 1

11

EXACT_NETWORK Function 275

A “more extreme” table X is defined in the probablistic sense as more extreme
than the observed table if the conditional probability computed for table X (for
the same marginal sums) is less than the conditional probability computed for
the observed table. The user should note that this definition can be considered
“two-sided” in the cell counts.

Because EXACT_ENUM uses total enumeration in computing the probability
of a more extreme table, the amount of computer time required increases very
rapidly with the size of the table. Tables with a large total count f•• or a large
value of r by c should not be analyzed using EXACT_ENUM. In such cases,
try using EXACT_NETWORK.

Example

In this example, the exact conditional probability for the 2 by 2 contingency
table

is computed.

table = [[8, 8], [12, 2]]

p = EXACT_ENUM(table, P_Value = pv, Prob_Table = pt, $

 Error_Chk = ec)

PRINT, "p-value =", p

p-value = 0.0576712

EXACT_NETWORK Function
Computes Fisher exact probabilities and a hybrid approximation of the Fisher
exact method for a two-way contingency table using the network algorithm.

Usage

result = EXACT_NETWORK(table)

8 12

8 2

�
��

�
��

276 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

Input Parameters

table — Two-dimensional array containing the observed counts in the contin-
gency table.

Returned Value

result — The p-value for independence of rows and columns. The p-value rep-
resents the probability of a more extreme table where “extreme” is taken in the
Neyman-Pearson sense. The p-value is “two-sided”.

Input Keywords

Double — If present and nonzero, double precision is used.

Approx_Params — One-dimensional array of size 3. Approx_Params(0) is the
expected value used in the hybrid approximation to Fisher’s exact test algorithm
for deciding when to use asymptotic probabilities when computing path lengths.
Approx_Params(1) is the percentage of remaining cells that must have esti-
mated expected values greater than Approx_Params(0) before asymptotic
probabilities can be used in computing path lengths. Approx_Params(2) is the
minimum cell estimated value allowed for asymptotic chi-squared probabilities
to be used.

Asymptotic probabilities are used in computing path lengths whenever
Approx_Params(1) or more of the cells in the table have estimated expected
values of Approx_Params(0) or more, with no cell having expected value less
than Approx_Params(2). See the Discussion section for details.

Defaults: Approx_Params(0) = 5.0

Approx_Params(1) = 80.0

Approx_Params(2) = 1.0

NOTE These defaults correspond to the “Cochran” condition.

No_Approx — If present and nonzero, the Fisher exact test is used and
Approx_Param is ignored.

Wk_Params — One-dimensional array of size 3. The network algorithm
requires a large amount of workspace. Some of the workspace requirements are

EXACT_NETWORK Function 277

well-defined, while most of the workspace requirements can only be estimated.
The estimate is based primarily on table size.

Function EXACT_ENUM allocates a default amount of workspace suitable for
small problems. If the algorithm determines that this initial allocation of work-
space is inadaquate, the memory is freed, a larger amount of memory allocated
(twice as much as the previous allocation), and the network algorithm is re-
started. The algorithm allows for up to Wk_Params(2) attempts to complete the
algorithm.

Because each attempt requires computer time, it is suggested that
Wk_Params(0) and Wk_Params(1) be set to some large numbers (like 1,000 and
30,000) if the problem to be solved is large. It is suggested that Wk_Params(1)
be 30 times larger than Wk_Params(0). Although EXACT_ENUM will eventu-
ally work its way up to a large enough memory allocation, it is quicker to
allocate enough memory initially.

The known (well-defined) workspace requirements are as follows:
Define f•• = ΣΣfij equal to the sum of all cell frequencies in the observed table,
nt = f•• + 1, mx = max (n_rows, n_columns), mn = min (n_rows, n_columns),
t1 = max (800 + 7mx, (5 + 2mx) (n_rows + n_columns + 1)), and t2 = max
(400 + mx, + 1, n_rows + n_columns + 1) where n_rows =
N_ELEMENTS(table(*,0)) and n_columns = N_ELEMENTS(table(0,*)).

The following amount of integer workspace is allocated: 3mx + 2mn + t1.

The following amount of real workspace is allocated: nt + t2.

The remainder of the workspace that is required must be estimated and allo-
cated based on Wk_Params(0) and Wk_Params(1). The amount of integer
workspace allocated is 6n (Wk_Params(0) + Wk_Params(1)). The amount of
real workspace allocated is n (6*Wk_Params(0) + 2* Wk_Params(1)). Variable
n is the index for the attempt, 1 < n ≤ Wk_Params(2).

Defaults: Wk_Params(0) = 100

Wk_Params(1) = 3000

Wk_Params(2) = 10

Output Keywords

Prob_Table — Named variable into which the probability of the observed table
occurring given that the null hypothesis of independent rows and columns is
true is stored.

278 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

P_Value — Named variable into which the p-value for independence of rows
and columns is stored. The p-value represents the probability of a more extreme
table where “extreme” is in the Neyman-Pearson sense. The P_Value is “two-
sided”. The p-value is also returned in functional form (see Returned Value).

A table is more extreme if its probability (for fixed marginals) is less than or
equal to Prob_Table.

Discussion

Function EXACT_NETWORK computes Fisher exact probabilities or a hybrid
algorithm approximation to Fisher exact probabilities for an r by c contingency
table with fixed row and column marginals (a marginal is the number of counts
in a row or column), where r = n_rows and c = n_columns. Let fij denote the
count in row i and column j of a table, and let fi and f•j denote the row and col-
umn marginals. Under the hypothesis of independence, the (conditional)
probability of the fixed marginals of the observed table is given by

where f•• is the total number of counts in the table. Pf corresponds to output
keyword Prob_Table.

A “more extreme” table X is defined in the probablistic sense as more extreme
than the observed table if the conditional probability computed for table X (for
the same marginal sums) is less than the conditional probability computed for
the observed table. The user should note that this definition can be considered
“two-sided” in the cell counts.

Example

The following example demonstrates and compares the various methods of
computing the chi-squared p-value with respect to accuracy. As seen in the out-
put of this example, the Fisher exact probability and the usual asymptotic chi-
squared probability (generated using function CONTINGENCY) can be
different.

PRO print_results, p, p2, p3, p4

P
f f

f f
f

i
i

r

j
j

c

ij
j

c

i

r=
•

=
•

=

••
==

∏ ∏

∏∏

! !

! !

1 1

11

EXACT_NETWORK Function 279

 PRINT, "Asymptotic Chi-Squared p-value"

 PRINT, "p-value =", p

 PRINT, "Network Algorithm with Approximation"

 PRINT, "p-value =", p2

 PRINT, "Network Algorithm without Approximation"

 PRINT, "p-value =", p3

 PRINT, "Total Enumeration Method"

 PRINT, "p-value =", p4

END

table = TRANSPOSE([[20, 20, 0, 0, 0], $

 [10, 10, 2, 2, 1], $

 [20, 20, 0, 0, 0]])

p = CONTINGENCY(table)

p2 = EXACT_NETWORK(table)

p3 = EXACT_NETWORK(table, /No_Approx)

p4 = EXACT_ENUM(table)

print_results, p, p2, p3, p4

% CONTINGENCY: Warning: STAT_EXP_VALUES_TOO_SMALL

 Some expected values are less than 1. Some asymptotic

p-values may not be good.

Asymptotic Chi-Squared p-value

p-value = 0.0322604

Network Algorithm with Approximation

p-value = 0.0601165

Network Algorithm without Approximation

p-value = 0.0598085

Total Enumeration Method

p-value = 0.0597294

Warning Errors

STAT_HASH_TABLE_ERROR_2 — The value “ldkey” = # is too small.
“ldkey” is calculated as Wk_Params(0)*pow(10, N_Attempts−1) ending this
execution attempt.

280 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

STAT_HASH_TABLE_ERROR_3 — The value “ldstp” = # is too small. “ldstp”
is calculated as Wk_Params(1)*pow(10, N_Attempts−1) ending this execution
attempt.

Fatal Errors

STAT_HASH_TABLE_ERROR_1 — The hash table key cannot be computed
because the largest key is larger than the largest representable integer. The algo-
rithm cannot proceed.

CAT_GLM Function
Analyzes categorical data using logistic, Probit, Poisson, and other generalized
linear models.

Usage

result = CAT_GLM(n_class, n_continuous, model, x)

Input Parameters

n_class — Number of classification variables.

n_continuous — Number of continuous variables.

model — Model used to analyze the data. The six models are as follows:

model Relationship* PDF of Response Variable

0 Exponential Poisson

1 Logistic Negative Binomial

2 Logistic Logarithmic

3 Logistic Binomial

4 Probit Binomial

5 Log-log Binomial

* Relationship between the parameter, θ or λ, and a linear model of
the explanatory variables, X β.

CAT_GLM Function 281

NOTE The lower bound of the response variable is 1 for model = 3 and is 0
for all other models. See the Discussion section for more information about
these models.

x — Two-dimensional array of size n_observations by (n_class + n_continuous)
+ m containing data for the independent variables, dependent variable, and
optional parameters, where n_observations is the number of observations.

The columns must be ordered such that the first n_class columns contain data
for the class variables, the next n_continuous columns contain data for the con-
tinuous variables, and the next column contains the response variable. The final
(and optional) m − 1 columns contain optional parameters, see keywords Ifreq,
Ifix, and Ipar.

Returned Value

result — An integer value indicating the number of estimated coefficients in the
model.

Input Keywords

Double — If present and nonzero, double precision is used.

Ifreq — Column number Ifreq in x containing the frequency of response for
each observation.

Ifix — Column number Ifix in x containing a fixed parameter for each observa-
tion that is added to the linear response prior to computing the model parameter.
The ‘fixed’ parameter allows one to test hypothesis about the parameters via the
log-likelihoods.

Ipar — Column number Ipar in x containing the value of the known distribu-
tion parameter for each observation, where x(i, Ipar) is the known distribution
parameter associated with the i-th observation. The meaning of the distribu-
tional parameter depends upon model as follows:

model Parameter Meaning of parameter (i)(Ipar)
0 E ln (E) is a fixed intercept to be included

in the linear predictor (i.e., the offset).
1 S Number of successes required for the

negative binomial distribution.
2 - Not used for this model.

282 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

Default: When model ≠ 2, each observation is assumed to have a
parameter value of 1. When model = 2, this parameter is not referenced.

Eps — The convergence criterion. Convergence is assumed when the maxi-
mum relative change in any coefficient estimate is less than Eps from one
iteration to the next or when the relative change in the log-likelihood, criterion,
from one iteration to the next is less than Eps / 100.0.

Default: Eps = 0.001

Itmax — Maximum number of iterations. Use Itmax = 0 to compute Hessian,
stored in Covariances, and the Newton step, stored in Last_Step, at the initial
estimates (The initial estimates must be input. Use keyword Init_Est).

Default: Itmax = 30

No_Intercept — If present and nonzero, there is no intercept in the model. By
default, the intercept is automatically included in the model.

Var_Effects — One-dimensional array of length n_effects containing the num-
ber of variables associated with each effect in the model, where n_effects is the
number of effects (source of variation) in the model. Keywords Var_Effects and
Indicies_Effects must be used together.

Indicies_Effects — One-dimensional index array of length Var_Effects(0) +
Var_Effects(1) + … + Var_Effects(n_effects - 1). The first Var_Effects(0) ele-
ments give the column numbers of x for each variable in the first effect. The
next Var_Effects(1) elements give the column numbers for each variable in the
second effect. … The last Var_Effects(n_effects - 1) elements give the column
numbers for each variable in the last effect. Keywords Indicies_Effects and
Var_Effects must be used together.

Init_Est — One-dimensional array of length n_coef_input containing initial
estimates of the parameters (n_coef_input can be completed by REGRES-
SORS). By default, unweighted linear regression is used to obtain initial
estimates.

Max_Class — An upper bound on the sum of the number of distinct values
taken on by each classification variable.

Default: Max_Class = n_observations by n_class

3-5 N Number of trials required for the
binomial distribution.

CAT_GLM Function 283

Output Keywords

N_Class_Vals — Named variable into which an one-dimensional array of
length n_class containing the number of values taken by each classification
variable is stored; the i-th classification variable has N_Class_Vals(i) distinct
values.

Class_Vals — Named variable into which an one-dimensional array of length

containing the distinct values of the classification variables in ascending order is
stored. The first N_Class_Vals(0) elements of Class_Vals contain the values for
the first classification variables, the next N_Class_Vals(1) elements contain the
values for the second classification variable, etc.

Coef_Stat — Named variable into which a two-dimensional array of size
n_coefficients by 4 containing the parameter estimates and associated statistics
is stored.

Criterion — Named variable into which the optimized criterion is stored. The
criterion to be maximized is a constant plus the log-likelihood.

Covariances — Named variable into which a two-dimensional array of size
n_coefficients by n_coefficients containing the estimated asymptotic covariance
matrix of the coefficients is stored. For Itmax = 0, this is the Hessian computed
at the initial parameter estimates.

model Statistic

0 Coefficient Estimate.

1 Estimated standard deviation of the estimated
coefficient.

2 Asymptotic normal score for testing that the
coefficient is zero.

3 The p-value associated with the normal score
in column 2.

N_ Class_ Vals i
i

� �
=

−
∑

0

n_class 1

284 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

Means — Named variable into which an one-dimensional array containing the
means of the design variables is stored. The array is of length n_coefficients if
keyword No_Intercept is used, and of length n_coefficients − 1 otherwise.

Case_Analysis — Named variable into which a two-dimensional array of size
n_observations by 5 containing the case analysis is stored.

Case statistics are computed for all observations except where missing values
prevent their computation.

Last_Step — Named variable into which an one-dimensional array of length
n_coefficients containing the last parameter updates (excluding step halvings) is
stored. For Itmax = 0, Last_Step contains the inverse of the Hessian times the
gradient vector, all computed at the initial parameter estimates.

Obs_Status — Named variable into which an one-dimensional array of length
n_observations indicating which observations are included in the extended like-
lihood is stored.

Remarks

3. Dummy variables are generated for the classification variables as follows:
An ascending list of all distinct values of each classification variable is
obtained and stored in Class_Vals. Dummy variables are then generated for
each but the last of these distinct values. Each dummy variable is zero

Column Statistic
0 Predicted mean for the observation if model = 0.

Otherwise, contains the probability of success on a sin-
gle trial.

1 The residual.
2 The estimated standard error of the residual.
3 The estimated influence of the observation.
4 The standardized residual.

Obs_Status(i) Status of observation

0 Observation i is in the likelihood

1 Observation i cannot be in the likelihood
because it contains at least one missing value
in x.

2 Observation i is not in the likelihood. Its esti-
mated parameter is infinite.

CAT_GLM Function 285

unless the classification variable equals the list value corresponding to the
dummy variable, in which case the dummy variable is one. See input key-
word Dummy_Method = 1 in routine REGRESSORS (Chapter 2,
Regression).

4. The “product” of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy vari-
ables associated with the classification variable.

5. The “product” of two classification variables yields dummy variables in the
usual manner. Each dummy variable associated with the first classification
variable multiplies each dummy variable associated with the second classifi-
cation variable. The resulting dummy variables are such that the index of
the second classification variable varies fastest.

Discussion

Function CAT_GLM uses iteratively reweighted least squares to compute
(extended) maximum likelihood estimates in some generalized linear models
involving categorized data. One of several models, including the probit, logistic,
Poisson, logarithmic, and negative binomial models, may be fit.

Note that each row vector in the data matrix can represent a single observation;
or, through the use of keyword Ifreq, each row can represent several observa-
tions. Also note that classification variables and their products are easily
incorporated into the models via the usual regression-type specifications.

The models available in CAT_GLM are:

Model PDF of the Response Variable Parameterization
0 f (y) = (λy exp (−λ)) / y! λ = N × exp (ω + η)

1

2
f (y) = (1 − θ)γ / (yln θ)

f y
S y

y
S y� � � �=

+ −
−

�
��

�
�� −

1
1 1θ θ θ

ω η
ω η

=
+

+ +
exp

exp

� �
� �1

θ
ω η

ω η
=

+
+ +
exp

exp

� �
� �1

286 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

Here, Φ denotes the cumulative normal distribution, N and S are known distri-
bution parameters specified for each observation via the keyword Ipar, and ω is
an optional fixed parameter of the linear response, γi, specified for each obser-
vation. (If keyword Ifix is not used, then ω is taken to be 0.) Since the log-log
model (model = 5) probabilities are not symmetric with respect to 0.5, quantita-
tively, as well as qualitatively, different models result when the definitions of
“success” and “failure” are interchanged in this distribution. In this model and
all other models involving θ, θ is taken to be the probability of a “success”.

Computational Details

The computations proceed as follows:

1. The input parameters are checked for consistency and validity.

2. Estimates of the means of the “independent” or design variables are com-
puted. The frequency or the observation in all but binomial distribution
models is taken from vector frequencies. In binomial distribution models,
the frequency is taken as the product of n = parameter (i) and frequencies
(i). Means are computed as

3. By default, unless keyword Init_Est is used, initial estimates of the coeffi-
cients are obtained (based upon the observation intervals) as multiple

3

4 θ = Φ (ω + η)

5 θ = 1 − exp (−exp (ω + η))

f y N
y

y N y� � � �=
�
��

�
�� − −θ θ1 θ

ω η
ω η

=
+

+ +
exp

exp

� �
� �1

f y N
y

y N y� � � �=
�
��

�
�� − −θ θ1

f y N
y

y N y� � � �=
�
��

�
�� − −θ θ1

x
f x

f
i i

i

= ∑

∑

CAT_GLM Function 287

regression estimates relating transformed observation probabilities to the
observation design vector. For example, in the binomial distribution mod-
els, θ may be estimated as

and, when model = 3, the linear relationship is given by

while if model = 4, Φ−1 (θ) = Xβ. When computing initial estimates, stan-
dard modifications are made to prevent illegal operations such as division
by zero. Regression estimates are obtained at this point, as well as later, by
use of function MULTIREGRESS (Chapter 2, Regression).

4. Newton-Raphson iteration for the maximum likelihood estimates is imple-
mented via iteratively re-weighted least squares. Let

denote the log of the probability of the i-th observation for coefficients β. In
the least-squares model, the weight of the i-th observation is taken as the
absolute value of the second derivative of

with respect to

$θ = y i i� � � �parameter

ln $ / $θ θ β1− ≈	
	
 X

Ψ xi
Tβ� �

Ψ xi
Tβ� �

γ βi i
Tx=

288 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

(times the frequency of the observation), and the dependent variable is
taken as the first derivative Ψ with respect to γi, divided by the square root
of the weight times the frequency. The Newton step is given by

where all derivatives are evaluated at the current estimate of γ and
βn+1 = β − ∆β. This step is computed as the estimated regression coeffi-
cients in the least-squares model. Step halving is used when necessary to
ensure a decrease in the criterion.

5. Convergence is assumed when the maximum relative change in any coeffi-
cient update from one iteration to the next is less than Eps or when the
relative change in the log-likelihood from one iteration to the next is less
than Eps / 100. Convergence is also assumed after Itmax iterations or when
step halving leads to a step size of less than 0.0001 with no increase in the
log-likelihood.

6. Residuals are computed according to methods discussed by Pregibon
(1981). Let li (γi) denote the log-likelihood of the i-th observation evalu-
ated at γi. Then, the standardized residual is computed as

where

is the value of γi when evaluated at the optimal

∆β Ψ Ψ= ∑ ∑−()" ’γ γi i i
T

i ix x x� � � �1∆β Ψ Ψ= ∑ ∑−()" ’γ γi i i
T

i ix x x� � � �1

r
l

l
i

i i

i i

=
′′

’
$

$

γ

γ

� �
� �

$γ i

$β

CAT_GLM Function 289

The denominator of this expression is used as the “standard error of the
residual” while the numerator is “raw” residual. Following Cook and Weis-
berg (1982), the influence of the i-th observation is assumed to be

This quantity is a one-step approximation to the change in the estimates
when the i-th observation is deleted. Here, the partial derivatives are with
respect to β.

Programming Notes

1. Indicator (dummy) variables are created for the classification variables
using function REGRESSORS (Chapter 2, Regression) using keyword
Dummy_Method = 1.

2. To enhance precision, “centering” of covariates is performed if the model
has an intercept and n_observations − Nmissing > 1. In doing so, the sam-
ple means of the design variables are subracted from each observation prior
to its inclusion in the model. On convergence, the intercept, its variance,
and its covariance with the remaining estimates are transformed to the
uncentered estimate values.

3. Two methods for specifying a binomial distribution model are possible. In
the first method, Ifreq contains the frequency of the observation while
x(i, irt-1) is 0 or 1 depending upon whether the observation is a success or
failure. In this case, x(i, n_class + n_ continuous) is always 1. The model
is treated as repeated Bernoulli trials, and interval observations are not pos-
sible. A second method for specifying binomial models is to use to
represent the number of successes in parameter (i) trials. In this case, fre-
quencies will usually be 1.

Example 1

The first example is from Prentice (1976) and involves the mortality of beetles
after five hours exposure to eight different concentrations of carbon disulphide.
The table below lists the number of beetles exposed (N) to each concentration
level of carbon disulphide (x, given as log dosage) and the number of deaths
which result (y). The data is given as follows:

l l li i
T

i i
’ ’
$ $ $γ γ γ� � � � � �′′ −1

290 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

The number of deaths at each concentration level are fitted as a binomial
response using logit (model = 3), probit (model = 4), and log-log (model = 5)
models. Note that the log-log model yields a smaller absolute log likelihood
(14.81) than the logit model (18.78) or the probit model (18.23). This is to be
expected since the response curve of the log-log model has an asymmetric
appearance, but both the logit and probit models are symmetric about θ = 0.5.

PRO print_results, cs, means, ca, crit, ls, cov

 PRINT, " Coefficient Satistics"

 PRINT, " Standard Asymptotic ", $

 "Asymptotic"

 PRINT, " Coefficient Error Z-statistic ", $

 "P-value"

 PM, cs, Format = "(4F13.2)"

 PRINT

 PRINT, "Covariate Means = ", means, Format = "(A18, F6.3)"

 PRINT

 PRINT, " Case Analysis"

 PRINT, " Resid-
ual ", $

 "Standardized"

 PRINT, " Predicted Residual Std. Error Leverage",
$

 " Residual"

 PM, ca, Format = "(5F12.3)"

Log Dosage
Number of Beetles

Exposed
Number of Deaths

1.690 59 6

1.724 60 13

1.755 62 18

1.784 56 28

1.811 63 52

1.836 59 53

1.861 62 61

1.883 60 60

CAT_GLM Function 291

 PRINT

 PRINT, "Log-Likelihood = ", crit, Format = "(A18, F9.5)"

 PRINT

 PRINT, " Last Step"

 PRINT, ls

 PRINT

 PRINT, "Asymptotic Coefficient Covariance"

 PM, cov, Format = "(2F12.4)"

END

model = 3

nobs = 8

x = ([[1.690, 1.724, 1.755, 1.784, $

 1.811, 1.836, 1.861, 1.883], $

 [6, 13, 18, 28, 52, 53, 61, 60], $

 [59, 60, 62, 56, 63, 59, 62, 60]])

ncoef = CAT_GLM(0, 1, model, x, Ipar = 2, Eps = 1.0e-3, $

 Coef_Stat = cs, Covariances = cov, $

 Criterion = crit, Means = means, $

 Case_Analysis = ca, Last_Step = ls, $

 Obs_Status = os)

print_results, cs, means, ca, crit, ls, cov

 Coefficient Satistics

 Standard Asymptotic Asymptotic

 Coefficient Error Z-statistic P-value

 -60.76 5.21 -11.66 0.00

 34.30 2.92 11.76 0.00

Covariate Means = 1.793

 Case Analysis

 Residual
Standardized

 Predicted Residual Std. Error Leverage Residual

292 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

 0.058 2.593 1.792 0.267
1.448

 0.164 3.139 2.871 0.347
1.093

 0.363 -4.498 3.786 0.311 -1.188

 0.606 -5.952 3.656 0.232 -1.628

 0.795 1.890 3.202 0.269
0.590

 0.902 -0.195 2.288 0.238 -0.085

 0.956 1.743 1.619 0.198
1.077

 0.979 1.278 1.119 0.138
1.143

 Log-Likelihood = -18.77818

 Last Step

 -3.67824e-08 1.04413e-05

Asymptotic Coefficient Covariance

 27.1368 -15.1243

 -15.1243 8.5052

Warning Errors

STAT_TOO_MANY_HALVINGS — Too many step halvings. Convergence is
assumed.

STAT_TOO_MANY_ITERATIONS — Too many iterations. Convergence is
assumed.

Fatal Errors

STAT_TOO_FEW_COEF — Init_Est is used and “n_coef_input” = #. The
model specified requires # coefficients.

STAT_MAX_CLASS_TOO_SMALL — The number of distinct values of the
classification variables exceeds “Max_Class” = #.

CAT_GLM Function 293

STAT_INVALID_DATA_8 — “N_Class_Values(#)” = #. The number of dis-
tinct values for each classification variable must be greater than one.

STAT_NMAX_EXCEEDED — The number of observations to be deleted has
exceeded “lp_max” = #. Rerun with a different model or increase the
workspace.

294 Chapter 5: Categorical and Discrete Data PV-WAVE:IMSL Statistics Reference

295

CHAPTER

6

Nonparametric Statistics

Contents of Chapter

One sample tests - Nonparametric Statistics

Sign test ... SIGNTEST Function

Wilcoxon rank sum test WILCOXON Function

Noehter’s test for cyclical
trend .. NCTRENDS Function

Cox and Stuarts’ sign test for trends
in location and dispersion CSTRENDS Function

Tie statistics .. TIE_STATS Function

Two or more samples

Kruskal-Wallis test KW_TEST Function

Friedman’s test FRIEDMANS_TEST Function

Cochran's Q test COCHRANQ Function

K-sample trends test KTRENDS Function

Introduction
Much of what is considered nonparametric statistics is included in other chap-
ters. Topics of possible interest in other chapters are: nonparametric measures of

296 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

location and scale (Chapter 1: Basic Statistics), nonparametric measures in a
contingency table (Chapter 5: Categorical and Discrete Data Analysis), mea-
sures of correlation in a contingency table (Chapter 3: Correlation and Covari-
ance), and tests of goodness of fit and randomness (Chapter 7: Tests of
Goodness of Fit)

Missing Values

Most routines described in this chapter automatically handle missing values
(NaN, “Not a Number”; see the introduction of this manual).

Tied Observations

Many of the routines described in this chapter contain a keyword Fuzz in the in-
put. Observations that are within Fuzz of each other in absolute value are said
to be tied. Moreover, in some routines, an observation within Fuzz of some val-
ue is said to be equal to that value. In function WILCOXON (page 300), for ex-
ample, such observations are eliminated from the analysis. If Fuzz = 0.0,
observations must be identically equal before they are considered to be tied.
Other positive values of Fuzz allow for numerical imprecision or roundoff error.

SIGNTEST Function
Performs a sign test.

Usage

result = SIGNTEST(x)

Input Parameters

x — One-dimensional array containing the input data.

Returned Value

result — Binomial probability of N_Pos_Dev or more positive differences in
N_ELEMENTS(x) – N_Zero_Dev trials. Call this value probability. If no option
is chosen, the null hypothesis is that the median equals 0.0.

Input Keywords

Double — If present and nonzero, double precision is used.

SIGNTEST Function 297

Percentage — Scalar value in the range (0,1). Keyword Percentage is the 100 x
Percentage percentile of the population.

Default: Percentage = 0.5

Percentile — Hypothesized percentile of the population from which x was
drawn.

Default: Percentile = 0.0

Output Keywords

N_Pos_Dev — Number of positive differences x(j – 1) – Percentile, for
j = 1, 2, ..., N_ELEMENTS(x).

N_Zero_Dev — Number of zero differences (ties) x(j – 1) – Percentile, for
j = 1, 2, ..., N_ELEMENTS(x).

Discussion

Function SIGNTEST tests hypotheses about the proportion p of a population
that lies below a value q, where p corresponds to keyword Percentage and q
corresponds to keyword Percentile. In continuous distributions, this can be a
test that q is the 100 p-th percentile of the population from which x was
obtained. To carry out testing, SIGNTEST tallies the number of values above q
in N_Pos_Dev. The binomial probability of N_Pos_Dev or more values above q
is then computed using the proportion p and the sample size N_ELEMENTS (x)
(adjusted for the missing observations and ties).

Hypothesis testing is performed as follows for the usual null and alternative
hypotheses:

• H0: Pr(X ≤ q) ≥ p (the p-th quantile is at least q)
H1: Pr(X < q) < p
Reject H0 if probability is less than or equal to the significance level.

• H0: Pr(X ≤ q) ≤ p (the p-th quantile is at least q)
H1: Pr(X < q) > p
Reject H0 if probability is greater than or equal to 1 minus the significance
level.

• H0: Pr(X = q) = p (the p-th quantile is q)
H1: Pr((X < q) < p or Pr((X < q) > p
Reject H0 if probability is less than or equal to half the significance level or
greater than or equal to 1 minus half the significance level.

298 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

The assumptions are as follows:

1. The Xi’s form a random sample; i.e., they are independent and identically
distributed.

2. Measurement scale is at least ordinal; i.e., an ordering less than, greater
than, and equal to exists in the observations.

Many uses for the sign test are possible with various values of p and q. For
example, to perform a matched sample test that the difference of the medians of
Y and Z is 0.0, let p = 0.5, q = 0.0, and Xi = Yi – Zi in matched observations Y
and Z. To test that the median difference is c, let q = c.

Example 1

This example tests the hypothesis that at least 50 percent of a population is neg-
ative. Because 0.18 < 0.95, the null hypothesis at the 5-percent level of
significance is not rejected.

x =[92, 139, -6, 10, 81, -11, 45, -25, -4, $

22, 2, 41, 13, 8, 33, 45, -33, -45, -12]

PRINT, "Probability = ", SIGNTEST(x)

Probability = 0.179642

Example 2

This example tests the null hypothesis that at least 75 percent of a population is
negative. Because 0.923 < 0.95, the null hypothesis at the 5-percent level of sig-
nificance is rejected.

x =[92, 139, -6, 10, 81, -11, 45, -25, -4, $

22, 2, 41, 13, 8, 33, 45, -33, -45, -12]

probability = SIGNTEST(x, Percentage = 0.75,$

Percentile = 0, N_Pos_Dev = np, $

N_Zero_Dev = nz)

PM, probability, Title = "Probability"

Probability

 0.922543

PM, np, $

Title = "Number of Positive Deviations"

Number of Positive Deviations

 12

PM, nz, Title = "Number of Ties"

SIGNTEST Function 299

Number of Ties

 0

300 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

WILCOXON Function
Performs a Wilcoxon rank sum test or a Wilcoxon signed rank test.

Usage

result = WILCOXON(x1 [, x2])

Input Parameters

x1 — One-dimensional array containing the first sample.

x2 — (Optional) One-dimensional array containing the second sample.

Returned Value

result — If a Wilcoxon rank sum test is performed, returns the two-sided p-
value for the Wilcoxon rank sum statistic that is computed with average ranks
used in the case of ties.

If a Wilcoxon signed rank test is performed, returns an array of length two con-
taining the following values:

The asymptotic probability of not exceeding the standardized (to an
asymptotic variance of 1.0) minimum of (W+, W–) using method 1
under the null hypothesis that the distribution is symmetric about 0.0.

And, the asymptotic probability of not exceeding the standardized (to an
asymptotic variance of 1.0) minimum of (W+, W–) using method 2
under the null hypothesis that the distribution is symmetric about 0.0.

Input Keywords

Double — If present and nonzero, double precision is used.

Fuzz — Nonnegative constant used to determine ties in computing ranks in the
combined samples. A tie is declared when two observations in the combined
sample are within Fuzz of each other.

Default: Fuzz = 100 x ε x max { |xi 1|, |xj 2|}, where ε is machine
precision for a Wilcoxon rank sum test, and Fuzz = 0.0 for a Wilcoxon
signed rank test.

WILCOXON Function 301

Output Keywords

Stats — Named variable into which the one-dimensional array of length 10 con-
taining the statistics below is stored.

If a Wilcoxon rank sum test is performed:

If a Wilcoxon signed rank test is performed:

Row Statistics

0 Wilcoxon W statistic (the sum of the ranks of the x
observations) adjusted for ties in such a manner that W
is as small as possible

1 2 x E (W) – W, where E (W)is the expected value of W

2 probability of obtaining a statistic less than or equal to
min {W, 2 x E (W) – W}

3 W statistic adjusted for ties in such a manner that W is
as large as possible

4 2 x E (W) – W, where E (W) is the expected value of W,
adjusted for ties in such a manner that W is as large as
possible

5 probability of obtaining a statistic less than or equal to
min {W, 2 x E (W) – W}, adjusted for ties in such a man-
ner that W is as large as possible

6 W statistic with average ranks used in case of ties

7 estimated standard error of Stats (6) under the null
hypothesis of no difference

8 standard normal score associated with Stats (6)

9 two-sided p-value associated with Stats (6)

Row Statistics

0 The positive rank sum, W+, using method 1.

1 The absolute value of the negative rank sum, W–, using
method 1.

2 The standardized (to anasymptotic variance of 1.0) mini-
mum of (W+, W–) using method 1.

3 The asymptotic probability of not exceeding stats(2)
under the null hypothesis that the distribution is symmet-
ric about 0.0.

4 The positive rank sum, W+, using method 2.

302 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

If Two Positional Arguments Are Supplied

Function WILCOXON performs the Wilcoxon rank sum test for identical popu-
lation distribution functions. The Wilcoxon test is a linear transformation of the
Mann-Whitney U test. If the difference between the two populations can be
attributed solely to a difference in location, then the Wilcoxon test becomes a
test of equality of the population means (or medians) and is the nonparametric
equivalent of the two-sample t-test. Function WILCOXON obtains ranks in the
combined sample after first eliminating missing values from the data. The rank
sum statistic is then computed as the sum of the ranks in the x1 sample.

Three methods for handling ties are used. (A tie is counted when two observa-
tions are within Fuzz of each other.) Method 1 uses the largest possible rank for
tied observations in the smallest sample, while Method 2 uses the smallest pos-
sible rank for these observations. Thus, the range of possible rank sums is
obtained. Method 3 for handling tied observations between samples uses the
average rank of the tied observations. Asymptotic standard normal scores are
computed for the W score (based on a variance that has been adjusted for ties)
when average ranks are used (see Conover 1980, p. 217). The probability asso-
ciated with the two-sided alternative is then computed.

Hypothesis Tests

In each of the following tests, the first line gives the hypothesis (and its alterna-
tive) under the assumptions 1 to 3 below, while the second line gives the
hypothesis when assumption 4 is also true. The rejection region is the same for
both hypotheses and is given in terms of Method 3 for handling ties. Another
output statistic should be used, (Stats(0) or Stats (3)), if another method for han-
dling ties is desired.

5 The absolute value of the negative rank sum, W–, using
method 2.

6 The standardized (to an asymptotic variance of 1.0) mini-
mum of (W+, W–) using method 2.

7 The asymptotic probability of not exceeding stats(6)
under the null hypothesis that the distribution is symmet-
ric about 0.0.

8 The number of zero observations.

9 The total number of observations that are tied, and that
are not within fuzz of zero.

Row Statistics

WILCOXON Function 303

Assumptions

1. x1 and x2 contain random samples from their respective populations.

2. All observations are mutually independent.

3. The measurement scale is at least ordinal (i.e., an ordering less than, greater
than, or equal to exists among the observations).

4. If f(x) and g(y) are the distribution functions of x and y, then
g(y) = f(x + c) for some constant c (i.e., the distribution of y is, at worst, a
translation of the distribution of x).

Tables of critical values of the W statistic are given in the references for small
samples.

If One Positional Argument is Supplied

Function WILCOXON performs a Wilcoxon signed rank test of symmetry
about zero. In one sample, this test can be viewed as a test that the population
median is zero. In matched samples, a test that the medians of the two popula-
tions are equal can be computed by first computing difference scores. These
difference scores would then be used as input to WILCOXON. A general refer-
ence for the methods used is Conover (1980).

Routine WILCOXON computes statistics for two methods for handling zero
and tied observations. In the first method, observations within Fuzz of zero are

Test Null Hypothesis Alternative Hypothesis Action

1 H0 : Pr(x1 < x2) = 0.5 H1 : Pr(x1 < x2) ≠ 0.5 Reject if Stats (9) is less
than the significance level
of the test. Alternatively,
reject the null hypothesis if
Stats (6) is too large or too
small.

H0 : E(x1) = E(x2) (H1 : E(x1) ≠ E(x2))

2 H0 : Pr(x1 < x2) ≤ 0.5 H1 : Pr(x1 < x2) > 0.5 Reject if Stats (6) is too
small.

H0 : E(x1) ≥ E(x2) H1 : E(x1) < E(x2)

3 H0 : Pr(x1 < x2) ≥ 0.5

H0 : E(x1) ≤ E(x2)

H1 : Pr(x1 < x2) < 0.5

H1 : E(x1) > E(x2)

Reject if Stats (6) is too
large.

304 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

not counted, and the average rank of tied observations is used. (Observations
within Fuzz of each other are said to be tied.) In the second method, observa-
tions within Fuzz of zero are randomly assigned a positive or negative sign, and
the ranks of tied observations are randomly permuted.

The W+ and W– statistics are computed as the sums of the ranks of the positive
observations and the sum of the ranks of the negative observations, respectively.
Asymptotic probabilities are computed using standard methods (see, e.g.,
Conover 1980, page 282).

Hypothesis Tests

The W+ and W– statistics may be used to test the following hypotheses about
the median, M. In deciding whether to reject the null hypothesis, use the brack-
eted statistic if method 2 for handling ties is preferred. Possible null hypotheses
and alternatives are given as follows:

• H0 : M ≤ 0 H1 : M > 0

Reject if stats(0) [or stats(4)] is too large.

• H0 : M ≥ 0 H1 : M < 0

Reject if stats(1) [or stats(5)] is too large.

• H0 : M = 0 H1 : M ≠ 0

Reject if stats(2) [or stats(6)] is too small. Alternatively, if an asymptotic
test is desired, reject if 2*stats(3) [or 2*stats(7)] is less than the significance
level.

Tabled values of the test statistic can be found in the references. If possible,
tabled values should be used. If the number of nonzero observations is too
large, then the asymptotic probabilities computed by WILCOXON can be used.

Assumptions

The assumptions required for the hypothesis tests are as follows:

1. The distribution of each Xi is symmetric.

2. The Xi are mutually independent.

3. All Xi’s have the same median.

4. An ordering of the observations exists (i.e., X1 > X2 and X2 > X3 implies that
X1 > X3).

WILCOXON Function 305

If other assumptions are made, related hypotheses that are more (or less) restric-
tive can be tested.

Example 1

The following example is taken from Conover (1980, p. 224). It involves the
mixing time of two mixing machines using a total of 10 batches of a certain
kind of batter, five batches for each machine. The null hypothesis is not rejected
at the 5-percent level of significance. The warning error is always printed when
one or more ties are detected.

x1 = [7.3, 6.9, 7.2, 7.8, 7.2]

x2 = [7.4, 6.8, 6.9, 6.7, 7.1]

p = WILCOXON(x1, x2, Stats = stats)

% WILCOXON: Warning: AT_LEAST_ONE_TIE.

At least one tie is detected between the

samples.

PRINT, "p-Value = ", p

p-Value = 0.141238

Example 2

The following example uses the same data as the previous example. Now, all
the statistics are output in the array Stats. First, a procedure is defined to output
the results.

PRO print_results, stats

PRINT, ’Wilcoxon W Statistic’, $
stats(0)

PRINT, ’2*E(W) - W’, $
stats(1)

PRINT, ’P-Value’, $
stats(2)

PRINT, ’Adjusted Wilcoxon Statistic..’, $
stats(3)

PRINT, ’Adjusted 2*E(W) - W’, $
stats(4)

PRINT, ’Adjusted P-Value’, $
stats(5)

PRINT, $
’W Statistics for Averaged Ranks ..’, $
stats(6)

306 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

PRINT, $
’Std Error of W (Averaged Ranks) ..’, $
stats(7)

PRINT, $
’Std Normal Score of W (Averaged ’ + $
’Ranks)..’, stats(8)

PRINT, $
’Two-Sided P-Value of W (Averaged ’ + $
’Ranks) ..’, stats(9)

END

x1 = [7.3, 6.9, 7.2, 7.8, 7.2]

x2 = [7.4, 6.8, 6.9, 6.7, 7.1]

p = WILCOXON(x1, x2, Stats = stats)

% WILCOXON: Warning: AT_LEAST_ONE_TIE.

At least one tie is detected between the

samples.

print_results, stats

Wilcoxon W Statistic 34.0000

2*E(W) - W 21.0000

P-Value 0.110072

Adjusted Wilcoxon Statistic 35.0000

Adjusted 2*E(W) - W 20.0000

Adjusted P-Value 0.0745036

W Statistics for Averaged Ranks 34.5000

Std Error of W (Averaged Ranks) 4.75803

Std Normal Score of W (Averaged Ranks)... 1.47120

Two-Sided P-Value of W (Averaged Ranks). 0.141238

Example 3

This example illustrates the application of the Wilcoxon signed rank test to a
test on a difference of two matched samples (matched pairs) {X1 = 223, 216,
211, 212, 209, 205, 201; and X2 = 208, 205, 202, 207, 206, 204, 203}. A test
that the median difference is 10.0 (rather than 0.0) is performed by subtracting
10.0 from each of the differences prior to calling WILCOXON. As can be seen
from the output, the null hypothesis is rejected. The warning error will always
be printed when the number of observations is 50 or less unless printing is
turned off for warning errors.

PRO output_results, stats

PRINT, ’Statistic Method 1 Method2’

PRINT, ’W+’, stats(0), stats(4)

WILCOXON Function 307

PRINT, ’W-’, stats(1), stats(5)

PRINT, ’Standardized Minimum...’, stats(2), stats(6)

PRINT, ’p-value’, stats(3), stats(7)

PRINT

PRINT, ’Number of zeros’, stats(8)

PRINT, ’Number of ties’, stats(9)

END

x = [-25.0, -21.0, -19.0, -15.0, -13.0, -11.0, -8.0]

p = WILCOXON(x, Fuzz = 0.0001, Stats = stats)

% WILCOXON: Warning: STAT_NOBS_LT_50

’n-observations’ = 7. The number of observations is less than
50, and exact tables should be referenced for probabilities.

OUTPUT_RESULTS, stats

Statistic Method 1 Method 2

W+0.00000 0.00000

W-28.0000 28.0000

Standardized Minimum ... -2.36643 -2.36643

p-value 0.00898023 0.00898024

Number of zeros0.00000

Number of ties0.00000

Warning Errors

STAT_AT_LEAST_ONE_TIE — At least one tie is detected between the
samples.

Fatal Errors

STAT_ALL_X_Y_MISSING — Each element of x1 and/or x2 is a missing
NaN (Not a Number) value.

308 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

NCTRENDS Function
Performs the Noether test for cyclical trend.

Usage

result = NCTRENDS(x)

Input Parameters

x — One-dimensional array containing the data in chronological order.

Returned Value

result — One-dimensional array of length 3 containing the probabilities of
Nstat(1) or more, Nstat(2) or more, or Nstat(3) or more monotonic sequences.

If Nstat(0) is less than 1, result(0) is set to NaN (not a number).

Input Keywords

Double — If present and nonzero, double precision is used.

Fuzz — Nonnegative constant used to determine ties in computing ranks in the
combined samples. A tie is declared when two observations in the combined
sample are within Fuzz of each other.

Default: Fuzz = 0.0.

Output Keywords

Nstat — Named variable into which the one-dimensional array of length 6 con-
taining the statistics below is stored:

Statistics

Nstat (0) The number of consecutive sequences of length three used to
detect cyclical trend when tying middle elements are eliminated
from the sequence, and the next consecutive observation is used.

Nstat (1) The number of monotonic sequences of length three in the set
defined by Nstat(0).

NCTRENDS Function 309

Nmissing — Named variable into which the number of missing values in x is
stored.

Discussion

Routine NCTRENDS performs the Noether test for cyclical trend (Noether
1956) for a sequence of measurements. In this test, the observations are first di-
vided into sets of three consecutive observations. Each set is then inspected, and
if the set is monotonically increasing or decreasing, the count variable is incre-
mented.

The count variables, Nstat(1), Nstat(2), and Nstat(3), differ in the manner in
which ties are handled. A tie can occur in a set (of size three) only if the middle
element is tied with either of the two ending elements. Tied ending elements are
not considered. In Nstat(1), tied middle observations are eliminated, and a new
set of size 3 is obtained by using the next observation in the sample. In
Nstat(2), the original set of size three is used, and tied middle observations are
counted as nonmonotonic. In Nstat(3), tied middle observations are counted as
monotonic.

The probabilities of occurrence of the counts are obtained from the binomial
distribution with p = 1/3, where p is the probability that a random sample of
size three from a continuous distribution is monotonic. The binomial sample
size is, of course, the number of sequences of size three found (adjusted for
ties).

Hypothesis test:

H0 : q = Pr(Xi > Xi - 1 > Xi - 2) + Pr(Xi < Xi - 1 < Xi - 2) ≤ 1/3 H1 : q > 1/3

Reject if result(0) (or result(1) or result(2) depending on the method used for
handling ties) is less than the significance level of the test.

Assumption: The observations are independent and are from a continuous distri-

Nstat (2) The number of nonmonotonic sequences where tied threesomes
are counted as nonmonotonic

Nstat (3) he number of monotonic sequences where tied threesomes are
counted as monotonic.

Nstat (4) The number of middle observations eliminated because they
were tied in forming the Nstat(0) sequences.

Nstat (5) The number of tied sequences found in forming the Nstat(2) and
Nstat(3) sequences. A sequence is called a tied sequence if the
middle element is tied with either of the two other elements.

Statistics

310 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

bution.

Example

A test for cyclical trend in a sequence of 1000 randomly generated observa-
tions is performed. Because of the sample used, there are no ties and all three
test statistics yield the same result.

RANDOMOPT, set = 123457

x = RANDOM(1000, /Uniform)

pval = NCTRENDS(x, Nstat = nstat)

PM, pval

 0.697881

 0.697881

 0.697881

PM, nstat

 333

 107

 107

 107

 0

 0

CSTRENDS Function
Performs the Cox and Stuart sign test for trends in location and dispersion.

Usage

result = CSTRENDS(x)

Input Parameters

x — One-dimensional array containing the data in chronological order.

Returned Value

result — One-dimensional array of length 8 containing the probabilities.

The first four elements of result are computed from two groups of observa-

CSTRENDS Function 311

tions.

I result(I)

0 Probability of Nstat(0) + Nstat(2) or more negative signs (ties are consid-
ered negative).

1 Probability of obtaining Nstat(1) or more positive signs (ties are considered
negative).

2 Probability of Nstat(0) + Nstat(2) or more negative signs (ties are consid-
ered positive).

3 Probability of obtaining Nstat(1) or more positive signs (ties are considered
positive).

The last four elements of result are computed from three groups of obser-
vations.

4 Probability of Nstat(0) + Nstat(2) or more negative signs (ties are consid-
ered negative).

5 Probability of obtaining Nstat(1) or more positive signs (ties are considered
negative).

6 Probability of Nstat(0) + Nstat(2) or more negative signs (ties are consid-
ered positive).

7 Probability of obtaining Nstat(1) or more positive signs (ties are considered
positive).

Input Keywords

Double — If present and nonzero, double precision is used.

Dispersion — A one-dimensional array of length 2. If Dispersion is set, the
Cox and Stuart tests for trends in dispersion are computed. Otherwise, as de-
fault, the Cox and Stuart tests for trends in location are computed. k = Disper-
sion(0) is the number of consecutive x elements to be used to measure
dispersion. If ids = Dispersion(1) is zero, the range is used as a measure of dis-
persion. Otherwise, the centered sum of squares is used.

Fuzz — A nonnegative constant used to determine when elements in x are tied.
If |x(i) – x(j)| is less than or equal to Fuzz, x(i) and x(j) are said to be tied. Fuzz
must be nonnegative.

Default: Fuzz = 0.0.

312 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

Output Keywords

Nstat — Named variable into which the one-dimensional array of length 8 con-
taining the statistics below is stored:

I Nstat(I)

0 Number of negative differences (two groups)

1 Number of positive differences (two groups)

2 Number of zero differences (two groups)

3 Number of differences used to calculate result(0) through result(3)
(two groups).

4 Number of negative differences (three groups)

5 Number of positive differences (three groups)

6 Number of zero differences (three groups)

7 Number of differences used to calculate result(4) through result(7) (three
groups).

Nmissing — Named variable into which the number of missing values in x is
stored.

Discussion

Function CSTRENDS tests for trends in dispersion or location in a sequence of
random variables depending upon the usage of Dispersion. A derivative of the
sign test is used (see Cox and Stuart 1955).

Location Test

For the location test (Default) with two groups, the observations are first divid-
ed into two groups with the middle observation thrown out if there are an odd
number of observations. Each observation in group one is then compared with
the observation in group two that has the same lexicographical order. A count is
made of the number of times a group-one observation is less than (Nstat(0)),
greater than (Nstat(1)), or equal to (Nstat(2)), its counterpart in group two. Two
observations are counted as equal if they are within Fuzz of one another.

In the three-group test, the observations are divided into three groups, with the
center group losing observations if the division is not exact. The first and third
groups are then compared as in the two-group case, and the counts are stored in
Nstat(4) through Nstat(6).

Probabilities in result are computed using the binomial distribution with sample

CSTRENDS Function 313

size equal to the number of observations in the first group (Nstat(3) or
Nstat(7)), and binomial probability p = 0.5.

Dispersion Test

The dispersion tests (when keyword Dispersion is set) proceed exactly as with
the tests for location, but using one of two derived dispersion measures. The in-
put value k = Dispersion(0) is used to define N_ELEMENTS(x)/k groups of
consecutive observations starting with observation 1. The first k observations
define the first group, the next k observations define the second group, etc.,
with the last observations omitted if N_ELEMENTS(x) is not evenly divisible
by k. A dispersion score is then computed for each group as either the range
(ids = 0), or a multiple of the variance (ids ≠ 0) of the observations in the
group. The dispersion scores form a derived sample. The tests proceed on the
derived sample as above.

Ties

Ties are defined as occurring when a group one observation is within Fuzz of its
last group counterpart. Ties imply that the probability distribution of x is not
strictly continuous, which means that Pr(x1 > x2) ≠ 0.5 under the null hypothesis
of no trend (and the assumption of independent identically distributed observa-
tions). When ties are present, the computed binomial probabilities are not ex-
act, and the hypothesis tests will be conservative.

Hypothesis tests

In the following, i indexes an observation from group 1, while j indexes the cor-
responding observation in group 2 (two groups) or group 3 (three groups).

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5

H1 : Pr(Xi > Xj) < Pr(Xi < Xj)
Hypothesis of upward trend. Reject if result(2) (or result(6))is less than the
significance level.

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5

H1 : Pr(Xi > Xj) > Pr(Xi < Xj)

Hypothesis of downward trend. Reject if result(1) (or result(5)) is less than
the significance level.

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5
H1 : Pr(Xi > Xj) ≠ Pr(Xi < Xj)

Two tailed test. Reject if 2 max(result(1), result(2)) (or 2 max(result(5), re-
sult(6)) is less than the significance level.

314 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

Assumptions

1. The observations are a random sample; i.e., the observations are indepen-
dently and identically distributed.

2. The distribution is continuous.

Example

This example illustrates both the location and dispersion tests. The data, which
are taken from Bradley (1968), page 176, give the closing price of AT&T on
the New York stock exchange for 36 days in 1965. Tests for trends in location
(Default), and for trends in dispersion (Dispersion) are performed. Trends in lo-
cation are found.

x = [9.5, 9.875, 9.25, 9.5, 9.375, 9.0, 8.75, 8.625, 8.0, $

 8.25, 8.25, 8.375, 8.125, 7.875, 7.5, 7.875, 7.875, $

 7.75,7.75, 7.75, 8.0, 7.5,7.5, 7.125, 7.25, 7.25, 7.125,
$

 6.75,6.5, 7.0, 7.0, 6.75, 6.625, 6.625,7.125, 7.75]

k = 2

ids = 0

pstat = CSTRENDS(x, Nstat = nstat)

% CSTRENDS: Warning: STAT_AT_LEAST_ONE_TIE

 At least one tie is detected between the samples.

PM, nstat, Title = " NSTAT"

 NSTAT

 0

 17

 1

 18

 0

 12

 0

 12

PM, pstat, Title = " PSTAT"

 PSTAT

 0.999996

 7.24792e-05

 1.00000

 3.81470e-06

 1.00000

TIE_STATS Function 315

 0.000244141

 1.00000

 0.000244141

pstat = CSTRENDS(x, Nstat = nstat, Dispersion = [k, ids])

% CSTRENDS: Warning: STAT_AT_LEAST_ONE_TIE

 At least one tie is detected between the samples.

PM, nstat, Title = " NSTAT"

 NSTAT

 4

 3

 2

 9

 4

 2

 0

 6

PM, pstat, Title = " PSTAT"

 PSTAT

 0.253906

 0.910156

 0.746094

 0.500000

 0.343750

 0.890625

 0.343750

 0.890625

TIE_STATS Function
Computes tie statistics for a sample of observations.

Usage

result = TIE_STATS(x)

Input Parameters

x — One-dimensional array containing the observations. x must be ordered
monotonically increasing with all missing values removed.

316 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

Returned Value

result — One-dimensional array of length 4 containing the tie statistics.

where tj is the number of ties in the j-th group (rank) of ties, and τ is the number
of tie groups in the sample.

Input Keywords

Double — If present and nonzero, double precision is used.

Fuzz — Nonnegative constant used to determine ties. Observations i and j are
tied if the successive differences x(k + 1) – x(k) between observations i and j,
inclusive, are all less than Fuzz.

Default: Fuzz = 0.0

Discussion

Function TIE_STATS computes tie statistics for a monotonically increasing
sample of observations. “Tie statistics” are statistics that may be used to correct
a continuous distribution theory nonparametric test for tied observations in the
data. Observations i and j are tied if the successive differences x(k + 1) − x(k),
inclusive, are all less than Fuzz. Note that if each of the monotonically increas-
ing observations is equal to its predecessor plus a constant, if that constant is
less than Fuzz, then all observations are contained in one tie group. For exam-
ple, if Fuzz = 0.11, then the following observations are all in one tie group.

0.0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00

result(0)

result(1)

result(2)

result(3)

= −

= − +

= − +

= − −

=

=

=

=

∑

∑

∑

∑

t t

t t t

t t t

t t t

j j
j

j j j
j

j j
j

j

j j
j

j

1 2

1 1 12

1 2 5

1 2

1

1

1

1

� �

� �� �

� �� �

� �� �

τ

τ

τ

τ

/

/

KW_TEST Function 317

Example

We want to compute tie statistics for a sample of length 7.

fuzz = 0.001

x = [1.0, 1.0001, 1.0002, 2.0, 3.0, 3.0, 4.0]

tstat = TIE_STATS(x, Fuzz = fuzz)

PRINT, tstat

 4.00000 2.50000 84.0000 6.00000

KW_TEST Function
Performs a Kruskal-Wallis test1 for identical population medians.

Usage

result = KW_TEST(n, y)

Input Parameters

n — One-dimensional array containing the number of responses for each of the
groups.

y — One-dimensional array of length N_ELEMENTS(n) that contains the re-
sponses for each of the groups. y must be sorted by group, with the n(0) obser-
vations in group 1 coming first, the n(1) observations in group two coming
second, and so on.

Returned Value

result — One-dimensional array of length 4 containing the Kruskal-Wallis sta-
tistics.

I result(I)

0 Kruskal-Wallis H statistic.

1 Asymptotic probability of a larger H under the null hypothesis of identi-
cal population medians.

2 H corrected for ties.

3 Asymptotic probability of a larger H (corrected for ties) under the null hy-
pothesis of identical populations

318 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

Input Keywords

Double — If present and nonzero, double precision is used.

Fuzz — Nonnegative constant used to determine ties in y. If (after sorting)
|y(i) – y(i + 1)| is less than or equal to Fuzz, then a tie is counted.

Default: Fuzz = 0.0

Discussion

The function KW_TEST generalizes the Wilcoxon two-sample test computed
by function WILCOXON (page 300) to more than two populations. It com-
putes a test statistic for testing that the population distribution functions in each
of K populations are identical. Under appropriate assumptions, this is a nonpara-
metric analogue of the one-way analysis of variance. Since more than two sam-
ples are involved, the alternative is taken as the analogue of the usual analysis
of variance alternative, namely that the populations are not identical.

The calculations proceed as follows: All observations are ranked regardless of
the population to which they belong. Average ranks are used for tied observa-
tions (observations within Fuzz of each other). Missing observations (observa-
tions equal to NaN, not a number) are not included in the ranking. Let Ri denote
the sum of the ranks in the i-th population. The test statistic H is defined as:

where N is the total of the sample sizes, ni is the number of observations in the

i-th sample, and S2 is computed as the (bias corrected) sample variance of the
Ri.

The null hypothesis is rejected when result(3) (or result(1)) is less than the sig-
nificance level of the test. If the null hypothesis is rejected, then the procedures
given in Conover (1980, page 231) may be used for multiple comparisons. The
function KW_TEST computes asymptotic probabilities using the chi-squared
distribution when the number of groups is 6 or greater, and a Beta approxima-
tion (see Wallace 1959) when the number of groups is 5 or less. Tables yielding

H
S

Ri
ni

N N

i

K
= −�

��
�
��

+

=
∑1

2

2 1 2

4
1

1 6

FRIEDMANS_TEST Function 319

exact probabilities in small samples may be obtained from Owen (1962).

Example

The following example is taken from Conover (1980, page 231). The data rep-
resents the yields per acre of four different methods for raising corn. Since
H = 25.5, the four methods are clearly different. The warning error is always
printed when the Beta approximation is used, unless printing for warning errors
is turned off.

y = [83.0, 91.0, 94.0, 89.0, 89.0, 96.0, 91.0, 92.0, 90.0, $

 91.0, 90.0, 81.0, 83.0, 84.0, 83.0, 88.0, 91.0, 89.0, $

 84.0, 101.0, 100.0, 91.0, 93.0, 96.0, 95.0, 94.0, 78.0,
$

 82.0, 81.0, 77.0, 79.0, 81.0, 80.0, 81.0]

n = [9, 10, 7, 8]

fuzz = 0.001

rlabel = ["H (no ties) =", $

 "Prob (no ties) =", $

 "H (ties) =", $

 "Prob (ties) ="]

s = KW_TEST(n, y, Fuzz = fuzz)

% KTRENDS: Warning: <unknown error>

 Error code 30046.

FOR i = 0, 3 DO $

 PM, rlabel(i), s(i), Format = "(A18, F6.2)"

H (no ties) = 25.46

Prob (no ties) = 0.00

H (ties) = 25.63

Prob (ties) = 0.00

FRIEDMANS_TEST Function
Performs Friedman’s test for a randomized complete block design.

Usage

result = FRIEDMANS_TEST(y)

320 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

Input Parameters

y — Two-dimensional array containing the observations. The first row of y con-
tain the observations on treatments 1, 2, …, N_ELEMENTS(y(0, *)) in the first
block. The second row of y contain the observations in the second block, etc.,
and so on.

Returned Value

results — The Chi-squared approximation of the asymptotic p-value for Fried-
man’s two-sided test statistic.

Input Keywords

Double — If present and nonzero, double precision is used.

Fuzz — Nonnegative constant used to determine ties. In the ordered observa-
tions, if |y(i) –y(i + 1)| is less than or equal to Fuzz, then y(i) and y(i + 1) are
said to be tied.

Default: Fuzz = 0.0.

Alpha — Critical level for multiple comparisons. Alpha should be between 0
and 1 exclusive.

Default: Alpha = 0.05.

Output Keywords

Stats — Named variable into which the one-dimensional array of length 6 con-
taining the Friedman statistics below is stored. Probabilities reported are com-
puted under the appropriate null hypothesis.

I Stats(I)

0 Friedman two-sided test statistic.

1 Approximate F value for Stats(0).

2 Page test statistic for testing the ordered alternative that the median of treat-
ment i is less than or equal to the median of treatment i + 1, with strict ine-
quality holding for some i.

3 Asymptotic p-value for Stats(0). Chi-squared approximation.

4. Asymptotic p-value for Stats(1). F approximation.

5 Asymptotic p-value for Stats(2). Normal approximation.

FRIEDMANS_TEST Function 321

Sum_Rank — Named varaible into which a one-dimensional array of length
N_ELEMENTS(x(0, *)) containing the sum of the ranks of each treatment is
stored.

Diff — Named variable into which the minimum absolute difference in two ele-
ments of Sum_Rank to infer at the Alpha level of significance that the medians
of the corresponding treatments are different is stored.

Discussion

Function FRIEDMANS_TEST may be used to test the hypothesis of equality of
treatment effects within each block in a randomized block design. No missing
values are allowed. Ties are handled by using the average ranks. The test statis-
tic is the nonparametric analogue of an analysis of variance F test statistic.

The test proceeds by first ranking the observations within each block. Let A de-
note the sum of the squared ranks, i.e., let

where Rank(Yij) is the rank of the i-th observation within the j-th block, b is the
number of blocks, and k is the number of treatments. Let

where

A Yij
j

b

i

k
=

==
∑∑ Rank� �2

11

B
b

Ri
i

k
=

=
∑

1 2

1

R Yi ij
j

b
=

=
∑ Rank� �

1

322 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

The Friedman test statistic (Stats(0)) is given by:

that, under the null hypothesis, has an approximate chi-squared distribution with
k – 1 degrees of freedom. The asymptotic probability of obtaining a larger chi-
squared random variable is returned in Stats(3).

If the F distribution is used in place of the chi-squared distribution, then the
usual oneway analysis of variance F-statistic computed on the ranks is used.
This statistic, reported in Stats(1), is given by

and asymptotically follows an F distribution with (k – 1) and (b –1)(k – 1) de-
grees of freedom under the null hypothesis. Stats(4) is the asymptotic probabili-
ty of obtaining a larger F random variable. (If A = B, Stats(0) and Stats(1) are
set to machine infinity, and the significance levels are reported as k!/(k!)b, un-
less this computation would cause underflow, in which case the significance
levels are reported as zero.) Iman and Davenport (1980) discuss the relative ad-
vantages of the chi-squared and F approximations. In general, the F approxima-
tion is considered best.

The Friedman T statistic is related both to the Kendall coefficient of concor-
dance and to the Spearman rank correlation coefficient. See Conover (1980) for
a discussion of the relationships.

If, at the α = Alpha level of significance, the Friedman test results in rejection
of the null hypothesis, then an asymptotic test that treatments i and j are differ-
ent is given by: reject H0 if |Ri − Rj| > D, where

where t has (b – 1)(k – 1) degrees of freedom. Page’s statistic (Stats(2)) is used
to test the same null hypothesis as the Friedman test but is sensitive to a mono-

T
k bB b k k

A bk k
=

− − +

− +

1 1 4

1 4

2 2

2

� � � �	

� �

/

/

F
b T

b k T
=

−
− −

1

1

� �
� �

D = − − −−t b A B b k1 2 2 1 1α / /� � � �� �� �

FRIEDMANS_TEST Function 323

tonic increasing alternative. The Page test statistic is given by

It is largest (and thus most likely to reject) when the Ri are monotonically in-
creasing.

Assumptions

The assumptions in the Friedman test are as follows:

1. The k-vectors of responses within each of the b blocks are mutually inde-
pendent (i.e., the results within one block have no effect on the results with-
in another block).

2. Within each block, the observations may be ranked.

The hypothesis tested is that each ranking of the random variables within each
block is equally likely. The alternative is that at least one of the treatments
tends to have larger values than one or more of the other treatments. The Fried-
man test is a test for the equality of treatment means or medians.

Example

The following example is taken from Bradley (1968), page 127, and tests the
hypothesis that 4 drugs have the same effects upon a person’s visual acuity.
Five subjects were used.

y = TRANSPOSE([[0.39, 0.55, 0.33, 0.41], $

 [0.21, 0.28, 0.19, 0.16], $

 [0.73, 0.69, 0.64, 0.62], $

 [0.41, 0.57, 0.28, 0.35], $

 [0.65, 0.57, 0.53, 0.60]])

fuzz = 0.001

p = FRIEDMANS_TEST(y, Fuzz = fuzz, Diff = diff, $

 Sum_Rank = sr, Stats = stat)

PM, stat, Title = "STATS"

STATS

 8.28000

 4.92857

 111.000

Q jRi
i

k
=

=
∑

1

324 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

 0.0405658

 0.0185906

 0.984954

PM, diff, Title = "DIFF"

DIFF

 6.65638

PM, sr, Title = "Sum_Rank"

Sum_Rank

 16.0000

 17.0000

 7.00000

 10.0000

The Friedman null hypothesis is rejected at the α = 0.05 while the Page null hy-
pothesis is not. (A Page test with a monotonic decreasing alternative would be
rejected, however.) Using Sum_Rank and Diff, one can conclude that treatment
3 is different from treatments 1 and 2, and that treatment 4 is different from
treatment 2, all at the α= 0.05 level of significance.

COCHRANQ Function
Performs a Cochran Q test for related observations.

Usage

result = COCHRANQ(x)

Input Parameters

x — Two-dimensional array containing the matrix of dichotomized data.

Returned Value

result — The p-value for the Cochran Q statistic.

Input Keywords

Double — If present and nonzero, double precision is used.

COCHRANQ Function 325

Output Keywords

Q — Named variable into which the Cochran’s Q statistic is stored.

Discussion

Function COCHRANQ computes the Cochran Q test statistic that may be used
to determine whether or not M matched sets of responses differ significantly
among themselves. The data may be thought of as arising out of a randomized
block design in which the outcome variable must be success or failure, coded as
1.0 and 0.0, respectively. Within each block, a multivariate vector of 1’s of 0’s
is observed. The hypothesis is that the probability of success within a block
does not depend upon the treatment.

Assumptions

1. The blocks are a random sample from the population of all possible blocks.

2. The outcome of each treatment is dichotomous.

Hypothesis

The hypothesis being tested may be stated in at least two ways.

1. H0 : All treatments have the same effect.
H1 : The treatments do not all have the same effect.

2. Let pij denote the probability of outcome 1.0 in block i, treatment j.
H0:pi1 = pi2 = … = pic for each i.

H1:pij ≠ pik for some i, and some j ≠ k.
where c (equal to N_ELEMENTS(x(0, *))) is the number of treatments.

The null hypothesis is rejected if Cochrans’s Q statistic is too large.

Remarks

1. The input data must consist of zeros and ones only. For example, let
n_variables = N_ELEMENTS(x(0, *)) and n_observations =
N_ELEMENTS(x(*, 0)), then the data may be pass-fail information on
n_variables questions asked of n_observations people or the test responses
of n_observations individuals to n_variables different conditions.

2. The resulting statistic is distributed approximately as chi-squared with
n_variables − 1 degrees of freedom if n_observations is not too small.
n_observations greater than or equal to 5 × n_variables is a conservative
recommendation.

326 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

Example

The following example is taken from Siegal (1956, p. 164). It measures the re-
sponses of 18 women to 3 types of interviews.

x = TRANSPOSE([[0.0, 0.0, 0.0], [1.0, 1.0, 0.0], $

 [0.0, 1.0, 0.0], [0.0, 0.0, 0.0], $

 [1.0, 0.0, 0.0], [1.0, 1.0, 0.0], $

 [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], $

 [1.0, 0.0, 0.0], [0.0, 0.0, 0.0], $

 [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], $

 [1.0, 1.0, 0.0], [1.0, 1.0, 0.0], $

 [1.0, 1.0, 0.0], [1.0, 1.0, 1.0], $

 [1.0, 1.0, 0.0], [1.0, 1.0, 0.0]])

pq = COCHRANQ(x)

PRINT, "pq =", pq

pq = 0.000240266

Warning Errors

STAT_ALL_0_OR_1 — “x” consists of either all ones or all zeros. “q” is set
to NaN (not a number). “result” is set to 1.0.

Fatal Errors

STAT_INVALID_X_VALUES — “x(#, #)” = #. “x” must consist of zeros and
ones only.

KTRENDS Function
Performs a k-sample trends test against ordered alternatives.

Usage

result = KTRENDS(n, y)

Input Parameters

n — One-dimensional array containing the number of responses for each of the
groups.

KTRENDS Function 327

y — One-dimensional array that contains the responses for each of the groups. y
must be sorted by group, with the n(0) observations in group 1 coming first, the
n(1) observations in group two coming second, and so on.

Returned Value

result — One-dimensional array of length 17 containing the test results.

I result(I)

0 Test statistic (ties are randomized).

1 Conservative test statistic with ties counted in favor of the null hypothesis.

2 p-value associated with result(0).

3 p-value associated with result(1).

4 Continuity corrected result(2).

5 Continuity corrected result(3).

6 Expected mean of the statistic.

7 Expected kurtosis of the statistic. (The expected skewness is zero.)

8 Total sample size.

9 Coefficient of rank correlation based upon result(0).

10 Coefficient of rank correlation based upon result(1).

11 Total number of ties between samples.

12 The t-statistic associated with result(2).

13 The t-statistic associated with result(3).

14 The t-statistic associated with result(4).

15 The t-statistic associated with result(5).

16 Degrees of freedom for each t-statistic.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Function KTRENDS performs a k-sample trends test against ordered alterna-

328 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

tives. The alternative to the null hypothesis of equality is that F1(X) < F2(X) <
… Fk(X), where F1, F2, etc., are cumulative distribution functions, and the oper-
ator < implies that the less than relationship holds for all values of x. While the
trends test used in KTRENDS requires that the background populations be con-
tinuous, ties occurring within a sample have no effect on the test statistic or as-
sociated probabilities. Ties between samples are important, however. Two
methods for handling ties between samples are used. These are:

1. Ties are randomly split (result(0)).

2. Ties are counted in a manner that is unfavorable to the alternative hypothe-
sis (result(1)).

Computational Procedure

Consider the matrices

where Xki is the i-th observation in the k-th population, Xmj is the j-th observa-
tion in the m-th population, and each matrix Mkm is nk by nm where ni = n(i).
Let Skm denote the sum of all elements in Mkm. Then, result(1) is computed as
the sum over all elements in Skm, minus the expected value of this sum (com-
puted as

when there are no ties and the distributions in all populations are equal). In re-
sult(0), ties are broken randomly, and the element in the summation is taken as
2.0 or 0.0 depending upon the result of breaking the tie.

Result(2) and result(3) are computed using the t distribution. The probabilities
reported are asymptotic approximations based upon the t statistics in result(12)
and result(13), which are computed as in Jonckheere (1954, page 141).
Similarly, result(4) and result(5) give the probabilities for result(14) and re-
sult(15), the continuity corrected versions of result(2) and result(3). The degrees
of freedom for each t statistic (result(16)) are computed so as to make the t dis-
tribution selected as close as possible to the actual distribution of the statistic
(see Jonckheere 1954, page 141).

M m
X X

km
ij
km ki mj= =

<�
��

�
��� � 2

0

if

otherwise

n nk mk m<∑

KTRENDS Function 329

Result(6), the variance of the test statistic result(0), and result(7), the kurtosis of
the test statistic, are computed as in Jonckheere (1954, page 138). The coeffi-
cients of rank correlation in result(8) and result(9) reduce to the Kendall τ sta-
tistic when there are just two groups.

Exact probabilities in small samples can be obtained from tables in Jonckheere
(1954). Note, however, that the t approximation appears to be a good one.

Assumptions

1. The Xmi for each sample are independently and identically distributed ac-

cording to a single continuous distribution.

2. The samples are independent.

Hypothesis tests

H0 : F1(X) ≥ F2(X) ≥ … ≥ Fk(X)
H1 : F1(X) < F2(X) < … < Fk(X)
Reject if result(2) (or result(3), or result(4) or result(5), depending upon the
method used) is too large.

Example

The following example is taken from Jonckheere (1954, page 135). It involves
four observations in four independent samples.

y = [19.0, 20.0, 60.0, 130.0, 21.0, 61.0, 80.0, 129.0, $

 40.0, 99.0, 100.0, 149.0, 49.0, 110.0, 151.0, 160.0]

n = [4, 4, 4, 4]

rlabel = ["stat(0) - Test Statistic (random)", $

 "stat(1) - Test Statistic (null hypothesis)",
$

 "stat(2) - p-value for stat(0)",
$

 "stat(3) - p-value for stat(1)",
$

 "stat(4) - Continuity corrected for stat(2)",
$

 "stat(5) - Continuity corrected for stat(3)",
$

 "stat(6) - Expected mean",
$

 "stat(7) - Expected kurtosis",
$

330 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

 "stat(8) - Total sample size",
$

 "stat(9) - Rank corr. coef. based on stat(0) ...",
$

 "stat(10)- Rank corr. coef. based on stat(1) ...",
$

 "stat(11)- Total number of ties",
$

 "stat(12)- t-statistic associated w/stat(2)",
$

 "stat(13)- t-statistic associated w/stat(3)",
$

 "stat(14)- t-statistic associated w/stat(4)",
$

 "stat(15)- t-statistic associated w/stat(5)",
$

 "stat(16)- Degrees of freedom"]

s = KTRENDS(n, y)

FOR i = 0, 16 DO $

 PM, rlabel(i), s(i), Format = "(A45, F10.5)"

stat(0) - Test Statistic (random) 46.00000

stat(1) - Test Statistic (null hypothesis) .. 46.00000

stat(2) - p-value for stat(0) 0.01483

stat(3) - p-value for stat(1) 0.01483

stat(4) - Continuity corrected for stat(2) .. 0.01683

stat(5) - Continuity corrected for stat(3) .. 0.01683

stat(6) - Expected mean 458.66666

stat(7) - Expected kurtosis -0.15365

stat(8) - Total sample size 16.00000

stat(9) - Rank corr. coef. based on stat(0) . 0.47917

stat(10)- Rank corr. coef. based on stat(1) . 0.47917

stat(11)- Total number of ties 0.00000

stat(12)- t-statistic associated w/stat(2) .. 2.26435

stat(13)- t-statistic associated w/stat(3) .. 2.26435

stat(14)- t-statistic associated w/stat(4) .. 2.20838

stat(15)- t-statistic associated w/stat(5) .. 2.20838

stat(16)- Degrees of freedom 36.04963

KTRENDS Function 331

332 Chapter 6: Nonparametric Statistics PV-WAVE:IMSL Statistics Reference

333

CHAPTER

7

Goodness of Fit

Contents of Chapter

General Goodness-of-fit tests

Chi-squared goodness-of-fit
test .. CHISQTEST Function

Shapiro-Wilk W test for
normality NORMALITY Function

One-sample continuos
data Kolmogorov-
Smirnov KOLMOGOROV1 Function

Two-sample continuos
data Kolmogorov-
Smirnov KOLMOGOROV2 Function

Mardia’s test for multivariate
normality MVAR_NORMALITY Function

Tests for Randomness

Runs test, Paris-serial test, d2 test or
triplets tests RANDOMNESS_TEST Function

334 Chapter 7: Goodness of Fit PV-WAVE:IMSL Statistics Reference

Introduction
The routines in this chapter are used to test for goodness of fit and randomness.
The goodness-of-fit tests are described in Conover (1980). There are two good-
ness-of-fit tests for general distributions, a Kolmogorov-Smirnov test and a chi-
squared test. The user supplies the hypothesized cumulative distribution func-
tion for these two tests. There are three routines that can be used to test specifi-
cally for the normal or exponential distributions.

The tests for randomness are often used to evaluate the adequacy of pseudoran-
dom number generators. These tests are discussed in Knuth (1981).

The Kolmogorov-Smirnov routines in this chapter compute exact probabilities
in small to moderate sample sizes. The chi-squared goodness-of-fit test may be
used with discrete as well as continuous distributions.

The Kolmogorov-Smirnov and chi-squared goodness-of-fit test routines allow
for missing values (NaN, not a number) in the input data. The routines that test
for randomness do not allow for missing values.

CHISQTEST Function
Performs a chi-squared goodness-of-fit test.

Usage

result = CHISQTEST(f, n_categories, x)

Input Parameters

f — Scalar string specifying a user-supplied function. Function f accepts one
scalar parameter and returns the hypothesized, cumulative distribution function
at that point.

n_categories — Number of cells into which the observations are to be tallied.

x — One-dimensional array containing the vector of data elements for this test.

Returned Value

result — The p-value for the goodness-of-fit chi-squared statistic.

CHISQTEST Function 335

Input Keywords

Double — If present and nonzero, double precision is used.

N_Params_Estimated — Number of parameters estimated in computing the
cumulative distribution function.

Equal_Cutpoints — If present and nonzero, equal probability cutpoints are
used. Keywords Equal_Cutpoints and Cutpoints cannot be used together.

Cutpoints — Specifies the named variable containing user-defined cutpoints to
be used by CHISQTEST. Keywords Cutpoints and Equal_Cutpoints cannot be
used together.

Frequencies — Named variable into which the array containing the vector fre-
quencies for the observations stored in x is stored.

Lower_Bound — Lower bound of the range of the distribution. If Lower Bound
= Upper Bound, a range on the whole real line is used (the default). If the
lower and upper endpoints are different, points outside of the range of these
bounds are ignored. Distributions conditional on a range can be specified when
Lower_Bound and Upper_Bound are used. If Lower_Bound is specified, then
Upper_Bound also must be specified. By convention, Lower_Bound is excluded
from the first interval, but Upper_Bound is included in the last interval.

Upper_Bound — Upper bound of the range of the distribution. If Lower Bound
= Upper Bound, a range on the whole real line is used (the default). If the
lower and upper endpoints are different, points outside of the range of these
bounds are ignored. Distributions conditional on a range can be specified when
Lower_Bound and Upper_Bound are used. If Upper_Bound is specified, then
Lower_Bound also must be specified. By convention, Lower_Bound is excluded
from the first interval, but Upper_Bound is included in the last interval.

Output Keywords

Used_Cutpoints — Specifies the named variable into which the cutpoints to be
used by CHISQTEST are stored.

Chi_Squared — Named variable into which the chi-squared test statistic is
stored.

Df — Named variable into which the degrees of freedom for the chi-squared
goodness-of-fit test are stored.

Cell_Counts — Named variable into which the cell counts are stored. The cell
counts are the observed frequencies in each of the n_categories cells.

336 Chapter 7: Goodness of Fit PV-WAVE:IMSL Statistics Reference

Cell_Expected — Named variable into which the cell expected values are
stored. The expected value of a cell is the expected count in the cell given that
the hypothesized distribution is correct.

Cell_Chisq — Named variable into which an array of length n_categories con-
taining the cell contributions to chi-squared are stored.

Discussion

Function CHISQTEST performs a chi-squared goodness-of-fit test that a ran-
dom sample of observations is distributed according to a specified theoretical
cumulative distribution. The theoretical distribution, which may be continuous,
discrete, or a mixture of discrete and continuous distributions, is specified by
the user-defined function f. Because the user is allowed to give a range for the
observations, a test that is conditional upon the specified range is performed.

Parameter n_categories gives the number of intervals into which the observa-
tions are to be divided. By default, equiprobable intervals are computed by
CHISQTEST, but intervals that are not equiprobable can be specified (through
the use of keyword Cutpoints).

Regardless of the method used to obtain the cutpoints, the intervals are such
that the lower endpoint is not included in the interval, while the upper endpoint
is always included. If the cumulative distribution function has discrete elements,
then user-provided cutpoints should always be used since CHISQTEST cannot
determine the discrete elements in discrete distributions.

By default, the lower and upper endpoints of the first and last intervals are –
infinity and +infinity. The endpoints can be specified by using the keywords
Lower_Bound and Upper_Bound.

A tally of counts is maintained for the observations in x as follows:

• If the cutpoints are specified by the user, the tally is made in the interval to
which xi belongs using the endpoints specified by the user.

• If the cutpoints are determined by CHISQTEST, then the cumulative proba-
bility at xi, F(xi), is computed by the function f.

The tally for xi is made in interval number

,

where m = n categories and

mF xi() 1+

CHISQTEST Function 337

is the function that takes the greatest integer that is no larger than the parame-
ter of the function. Thus, if the computer time required to calculate the
cumulative distribution function is large, user-specified cutpoints may be pre-
ferred in order to reduce the total computing time.

If the expected count in any cell is less than 1, then a rule of thumb is that the
chi-squared approximation may be suspect. A warning message to this effect is
issued in this case, as well as when an expected value is less than 5.

Programming Notes

The user must supply a function f with calling sequence F(y) that returns the
value of the cumulative distribution function at any point y in the (optionally)
specified range.

Many of the cumulative distribution functions in this reference manual can be
used for f. It is, however, necessary to write a user-defined PV-WAVE function
that calls the CDF, and then pass the name of this user-defined function for f.

Example

This example illustrates the use of CHISQTEST on a randomly generated sam-
ple from the normal distribution. One-thousand randomly generated
observations are tallied into 10 equiprobable intervals. In this example, the null
hypothesis is not rejected.

.RUN

; Define the hypothesized, cumulative distribution function.

- FUNCTION user_cdf, k

- RETURN, NORMALCDF(k)

- END

RANDOMOPT, Set = 123457

x = RANDOM(1000, /Normal)

; Generate normal deviates.

p_value = CHISQTEST("user_cdf", 10, x)

; Perform chi-squared test.

PM, p_value

⋅

338 Chapter 7: Goodness of Fit PV-WAVE:IMSL Statistics Reference

; Output the results.

0.154603

Warning Errors

STAT_EXPECTED_VAL_LESS_THAN_1 — An expected value is less than 1.

STAT_EXPECTED_VAL_LESS_THAN_5 — An expected value is less than 5.

Fatal Errors

STAT_ALL_OBSERVATIONS_MISSING — All observations contain missing
values.

STAT_INCORRECT_CDF_1 — Function f is not a cumulative distribution
function. The value at the lower bound must be nonnegative, and the value at
the upper bound must not be greater than 1.

STAT_INCORRECT_CDF_2 — Function f is not a cumulative distribution
function. The probability of the range of the distribution is not positive.

STAT_INCORRECT_CDF_3 — Function f is not a cumulative distribution
function. Its evaluation at an element in x is inconsistent with either the evalua-
tion at the lower or upper bound.

STAT_INCORRECT_CDF_4 — Function f is not a cumulative distribution
function. Its evaluation at a cutpoint is inconsistent with either the evaluation at
the lower or upper bound.

STAT_INCORRECT_CDF_5 — An error has occurred when inverting the
cumulative distribution function. This function must be continuous and defined
over the whole real line.

NORMALITY Function 339

NORMALITY Function
Performs a test for normality.

Usage

result = NORMALITY(x)

Input Parameters

x — One-dimensional array containing the observations.

Returned Value

result — The p-value for the Shapiro-Wilk W test or the Lilliefors test for nor-
mality. The Shapiro-Wilk test is the default. If the Lilliefors test is used,
probabilities less than 0.01 are reported as 0.01, and probabilities greater than
0.10 for the normal distribution are reported as 0.5; otherwise, an approximate
probability is computed.

Input Keywords

Double — If present and nonzero, double precision is used.

N_cat — An integer specifying number of cells into which the observations are
to be tallied. Keywords N_cat, Df, and Chisq must be used together and indicate
that the chi-squared goodness-of-fit test is to be performed.

Output Keywords

Chisq — Specifies a variable into which the chi-square statistic is stored. Key-
words N_cat, Df, and Chisq must be used together and indicate that the chi-
squared goodness-of-fit test is to be performed.

Df — Specifies a variable into which the degrees of freedom for the test are
stored.Keywords N_cat, Df and Chisq must be used together and indicate that
the chi-squared goodness-of-fit test is to be performed.

Shapiro_Wilk — Named variable into which the Shapiro-Wilk W statistic is
stored. If Shapiro_Wilk is present, then the Shapiro-Wilk W test is performed.

Default: Shapiro-Wilk W test is performed

340 Chapter 7: Goodness of Fit PV-WAVE:IMSL Statistics Reference

Lilliefors — Named variable into which the maximum absolute difference
between the empirical and the theoretical distributions is stored. If Lilliefors is
present, then Lilliefors test is performed.

Discussion

Three methods are provided for testing normality: the Chi-Squared test, the Sha-
piro-Wilk W test, and the Lilliefors test.

Chi-Squared Test

This function computes the chi-squared statistic, its p-value, and the degrees of
freedom of the test. Keyword N_cat finds the number of intervals into which
the observations are to be divided. The intervals are equiprobable except for the
first and last interval which are infinite in length. If more flexibility is desired
for the specification of intervals, the same test can be performed with a call to
function CHISQTEST using the optional arguments described for that function.

Shapiro-Wilk W Test

D’Agostino and Stevens (1986, p. 406) refer to the Shapiro-Wilk W test as the
best omnibus tests of normality. The function is based on the approximations
and code given by Royston (1982a, b, c). It can be used in samples as large as
2,000 or as small as 3. In the Shapiro and Wilk test, W is given by

where x(i) is the i-th smallest order statistic and

is the sample mean. Royston (1982) gives approximations and tabled values that
can be used to compute the coefficients ai, i = 1, ..., n, and obtains the signifi-
cance level of the W statistic.

Lilliefors Test

This function computes Lilliefors test and its p-values for a normal distribution
in which both the mean and variance are estimated. The one-sample, two-sided
Kolmogorov-Smirnov statistic D is first computed. The p-values are then com-
puted using an analytic approximation given by Dallal and Wilkinson (1986).

W aix i()∑

2

xi x–()2∑

⁄=

x

NORMALITY Function 341

Because Dallal and Wilkinson give approximations in the range (0.01, 0.10) if
the computed probability of a greater D is less than 0.01, a note is issued and
the p-value is set to 0.50. Note that because parameters are estimated, p-values
in Lilliefors test are not the same as in the Kolmogorov-Smirnov Test.

Observations should not be tied. If tied observations are found, an informa-
tional message is printed. A general reference for the Lilliefors test is Conover
(1980). The original reference for the test for normality is Lilliefors (1967).

Example 1

The following example is taken from Conover (1980, pp. 195, 364). The data
consists of 50 two-digit numbers taken from a telephone book. The W test fails
to reject the null hypothesis of normality at the .05 level of significance. For
this example, the data is stored in ASCII file data.dat and read using procedure
RMF. The file data.dat contains the following data:

23 36 54 61 73 23 37 54 61 73 24 40 56 62 74

27 42 57 63 75 29 43 57 64 77 31 43 58 65 81

32 44 58 66 87 33 45 58 68 89 33 48 58 68 93

35 48 59 70 97

OPENR, unit, ’data.dat’, /Get_Lun

RMF, unit, x, 50, 1

CLOSE, unit

p = NORMALITY(x)

PRINT, "P-Value = ", p

P-Value = 0.230858

Example 2

The following example uses the same data as the previous example. Here, the
Shapiro-Wilk W statistic is output.

OPENR, unit, ’data.dat’, /Get_Lun

RMF, unit, x, 50, 1

CLOSE, unit

p = NORMALITY(x, Shapiro_Wilk = sw)

PRINT, "p-Value = ", p

p-Value = 0.230858

PRINT, "Shapiro Wilk W Statistic = ", sw

Shapiro Wilk W Statistic = 0.964217

342 Chapter 7: Goodness of Fit PV-WAVE:IMSL Statistics Reference

Warning Errors

STAT_ALL_OBS_TIED— All observations in x are tied.

Fatal Errors

STAT_NEED_AT_LEAST_5 — All but # elements of x are missing. At least
five nonmissing observations are necessary to continue.

STAT_NEG_IN_EXPONENTIAL — In testing the exponential distribution, an
invalid element in x is found (x[] = #). Negative values are not possible in
exponential distributions.

STAT_NO_VARIATION_INPUT — There is no variation in the input data. All
nonmissing observations are tied.

KOLMOGOROV1 Function
Performs a Kolmogorov-Smirnov one-sample test for continuous distributions.

Usage

result = KOLMOGOROV1(f, x)

Input Parameters

f — Scalar string specifying a user-supplied function to compute the cumula-
tive distribution function (CDF) at a given value. Parameter f accepts the fol-
lowing parameter and returns the computed function value at this point:

y — Point at which the function is to be evaluated.

x — One-dimensional array containing the observations.

Returned Value

result — One-dimensional array of length 3 containing Z, p1, and p 2 .

Input Keywords

Double — If present and nonzero, double precision is used.

KOLMOGOROV1 Function 343

Output Keywords

Differences — Named variable into which an array containing
Dn , Dn

+, Dn
- is stored.

Nmissing — Named variable into which the number of missing values is stored.

Discussion

The function KOLMOGOROV1 performs a Kolmogorov-Smirnov goodness-of-
fit test in one sample. The hypotheses tested follow:

where F is the cumulative distribution function (CDF) of the random variable,
and the theoretical CDF, F* , is specified via the user-supplied function f. Let
n = N_ELEMENTS(x) − Nmissing. The test statistics for both one-sided alterna-
tives

and

and the two-sided (Dn = Differences(0)) alternative are computed as well as an
asymptotic z-score (result(0)) and p-values associated with the one-sided (re-
sult(1)) and two-sided (result(2)) hypotheses. For n > 80, asymptotic p-values
are used (see Gibbons 1971). For n ≤ 80, exact one-sided p-values are comput-
ed according to a method given by Conover (1980, page 350). An approximate
two-sided test p-value is obtained as twice the one-sided p-value. The approxi-
mation is very close for one-sided p-values less than 0.10 and becomes very bad
as the one-sided p-values get larger.

• = ≠
• ≥ <
• ≤ >

∗ ∗

∗ ∗

∗ ∗

H F x F x H F x F x

H F x F x H F x F x

H F x F x H F x F x

0 1

0 1

0 1

: () () : () ()

: () () : () ()

: () () : () ()

D Differencn es
+ = ()1

D Differencesn
− = ()2

344 Chapter 7: Goodness of Fit PV-WAVE:IMSL Statistics Reference

Programming Notes

1. The theoretical CDF is assumed to be continuous. If the CDF is not contin-
uous, the statistics

will not be computed correctly.

2. Estimation of parameters in the theoretical CDF from the sample data will
tend to make the p-values associated with the test statistics too liberal. The
empirical CDF will tend to be closer to the theoretical CDF than it should
be.

3. No attempt is made to check that all points in the sample are in the support
of the theoretical CDF. If all sample points are not in the support of the
CDF, the null hypothesis must be rejected.

Example

In this example, a random sample of size 100 is generated via routine RAN-
DOM for the uniform (0, 1) distribution. We want to test the null hypothesis
that the CDF is the standard normal distribution with a mean of 0.5 and a vari-
ance equal to the uniform (0, 1) variance (1/12).

FUNCTION l_Cdf, x

 mean = 0.5

 std = 0.2886751

 z = (x - mean)/std

 val = NORMALCDF(z)

 RETURN, val

END

RANDOMOPT, set = 123457

x = RANDOM(100, /Uniform)

stats = KOLMOGOROV1("l_cdf", x, Differences = d, $

 Nmissing = nm)

PRINT, "D =", d(0)

D = 0.147083

PRINT, "D+ =", d(1)

Dn
∗

KOLMOGOROV2 Function 345

D+ = 0.0809559

PRINT, "D- =", d(2)

D- = 0.147083

PRINT, "Z =", stats(0)

Z = 1.47083

PRINT, "Prob greater D one sided =", stats(1)

Prob greater D one sided = 0.0132111

KOLMOGOROV2 Function
Performs a Kolmogorov-Smirnov two-sample test.

Usage

result = KOLMORGOROV2(x, y)

Input Parameters

x — One-dimensional array containing the observations from sample one.

y — One-dimensional array containing the observations from sample two.

Returned Value

result — One-dimensional array of length 3 containing Z, p1, and p2 .

Input Keywords

Double — If present and nonzero, double precision is used.

Output Keywords

Differences — Named variable into which a one-dimensional array containing
Dn , Dn

+, Dn
- is stored.

Nmissingx — Named variable into which the number of missing values in the
x sample is stored.

Nmissingy — Named variable into which the number of missing values in the
y sample is stored.

346 Chapter 7: Goodness of Fit PV-WAVE:IMSL Statistics Reference

Discussion

Function KOLMOGOROV2 computes Kolmogorov-Smirnov two-sample test
statistics for testing that two continuous cumulative distribution functions
(CDF’s) are identical based upon two random samples. One- or two-sided alter-
natives are allowed. If n_observations_x = N_ELEMENTS(x) and
n_observations_y = N_ELEMENTS(y), then the exact p-values are computed
for the two-sided test when n_observations_x * n_observations_y is less than
104.

Let Fn(x) denote the empirical CDF in the X sample, let Gm(y) denote the em-
pirical CDF in the Y sample, where n = n_observations_x − Nmissingx and
m = n_observations_y − Nmissingy, and let the corresponding population distri-
bution functions be denoted by F(x) and G(y), respectively. Then, the hypothe-
ses tested by KOLMOGOROV2 are as follows:

The test statistics are given as follows:

Asymptotically, the distribution of the statistic

(returned in result (0)) converges to a distribution given by Smirnov (1939).

Exact probabilities for the two-sided test are computed when m * n is less than
or equal to 104, according to an algorithm given by Kim and Jennrich (1973;).
When m * n is greater than 104, the very good approximations given by Kim
and Jennrich are used to obtain the two-sided p-values. The one-sided probabili-
ty is taken as one half the two-sided probability. This is a very good approxima-
tion when the p-value is small (say, less than 0.10) and not very good for large

• = ≠
• ≤ >
• ≥ <

H F x G x H F x G x

H F x G x H F x G x

H F x G x H F x G x

0 1

0 1

0 1

: () () : () ()

: () () : () ()

: () () : () ()

D D D

D F x G x

D x F x

mn mn mn

mn x n m

mn x m n

=

= −
= −

+ −

+

−

max Differences(0)

max (Differences(1)

max (G Differences(2)

, ()

() ()) ()

() ()) ()

	

Z D m n m nmn= + ∗() / ()

MVAR_NORMALITY Function 347

p-values.

Example

The following example illustrates the KOLMOGOROV2 routine with two ran-
domly generated samples from a uniform(0,1) distribution. Since the two theo-
retical distributions are identical, we would not expect to reject the null
hypothesis.

RANDOMOPT, set = 123457

x = RANDOM(100, /Uniform)

y = RANDOM(60, /Uniform)

stats = KOLMOGOROV2(x, y, Differences = d, Nmissingx = nmx, $

 Nmissingy = nmy)

PRINT, "D =", d(0)

D = 0.180000

PRINT, "D+ =", d(1)

D+ = 0.180000

PRINT, "D- =", d(2)

D- = 0.0100001

PRINT, "Z =", stats(0)

Z = 1.10227

PRINT, "Prob greater D one sided =", stats(1)

Prob greater D one sided = 0.0720105

PRINT, "Prob greater D two sided =", stats(2)

Prob greater D two sided = 0.144021

PRINT, "Missing X =", nmx

Missing X = 0

PRINT, "Missing Y =", nmy

Missing Y = 0

MVAR_NORMALITY Function
Computes Mardia’s multivariate measures of skewness and kurtosis and tests

348 Chapter 7: Goodness of Fit PV-WAVE:IMSL Statistics Reference

for multivariate normality.

Usage

result = MVAR_NORMALITY(x)

Input Parameters

x — Two-dimensional array containing the data in which
N_ELEMENTS(x(*,0)) is the number of observations (numbers of rows of data)
in x and N_ELEMENTS(x(0,*)) is the dimenionality of the multivariate space
for which the skewness and kurtosis are to be computed (number of variables in
x).

Returned Value

result — One-dimensional array of size 13 containing output statistics

I result (I)

0 estimated skewness

1 expected skewness assuming a multivariate nor-
mal distribution

2 asymptotic chi-squared statistic assuming a multi-
variate normal distribution

3 probability of a greater chi-squared

4 Mardia and Foster's standard normal score for
skewness

5 estimated kurtosis

6 expected kurtosis assuming a multivariate normal
distribution

7 asymptotic standard error of the estimated kurtosis

8 standard normal score obtained from result(5)
through result(7)

MVAR_NORMALITY Function 349

Input Keywords

Double — If present and nonzero, double precision is used.

Frequencies — One-dimensional array containing the frequencies. Frequencies
must be an integer value. Default assumes all Frequencies equal one.

Weights — One-dimensional array containing the weights. Weights must be
non-negative. Default assumes all Weights equal one.

Output Keywords

Sum_Freqs — Named variable into which the sum of the frequencies of all ob-
servations used in the computations is stored.

Sum_Weights — Named variable into which the sum of the weights times the
frequencies for all observations used in the computations is stored.

Nmissing — Named variable into which the number of rows of data in x con-
taining any missing values (NaN) is stored.

Means — Named variable into which a one-dimensional array of length
N_ELEMENTS(x(0,*)) containing the sample means is stored.

R_Matrix — Named variable into which an upper triangular array containing
the Cholesky RTR factorization of the covariance matrix is stored.

Discussion

Function MVAR_NORMALITY computes Mardia’s (1970) measures b1,p
and b2,p of multivariate skewness and kurtosis, respectfully, for
p = N_ELEMENTS(x(0,*)). These measures are then used in computing tests
for multivariate normality. Three test statistics, one based upon b1,p alone, one
based upon b2,p alone, and an omnibus test statistic formed by combining nor-

9 p-value corresponding to result(8)

10 Mardia and Foster's standard normal score for
kurtosis

11 Mardia's SW statistic based upon result(4) and
result(10)

12 p-value for result(11)

350 Chapter 7: Goodness of Fit PV-WAVE:IMSL Statistics Reference

mal scores obtained from b1,p and b2,p are computed. On the order of np3,
operations are re-quired in computing b1,p when the method of Isogai (1983) is
used, where n = N_ELEMENTS(x(*,0)). On the order of np2, operations are
required in computing b2,p.

Let

where

fi is the frequency of the i-th observation, and wi is the weight for this observa-
tion. (Weights wi are defined such that xi is distributed according to a multivari-
ate normal, N(µ, Σ/wi) distribution, where Σ is the covariance matrix.) Mardia’s
multivariate skewness statistic is defined as:

while Mardia’s kurtosis is given as:

Both measures are invariant under the affine (matrix) transformation AX + D,
and reduce to the univariate measures when p = N_ELEMENTS(x(0,*)) = 1.
Using formulas given in Mardia and Foster (1983), the approximate expected
value, asymptotic standard error, and asymptotic p-value for b2,p, and the ap-
proximate expected value, an asymptotic chi-squared statistic, and p-value for

d w w x x S x xij i j i
T

j= − −−() ()1

S
w f x x x x

f

x
w f

w f x

i
n

i i i i
T

i
n

i

i
n

i i
i i i

i

n

=
∑ − −

∑

=
∑

∑

=

=

= =

1

1

1 1

1

()()

b
n

f f dp i j ij
j

n

i

n

1 2
3

11

1
, =

==
∑∑

b
n

f dp i ii
i

n

2
2

1

1
, = ∑

=

MVAR_NORMALITY Function 351

the b1,p statistic are computed. These statistics are all computed under the null
hypothesis of a multivariate normal distribution. In addition, standard normal
scores W1(b1,p) and W2(b2,p) (different from but similar to the asymptotic nor-
mal and chi-squared statistics above) are computed. These scores are combined
into an asymptotic chi-squared statistic with two degrees of freedom:

This chi-squared statistic may be used to test for multivariate normality. A
p-value for the chi-squared statistic is also computed.

Example

In the following example, 150 observations from a 5 dimensional standard nor-
mal distribution are generated via routine RANDOM (Chapter 12, Random
Number Generation). The skewness and kurtosis statistics are then computed
for these observations.

m = 150

n = 5

RANDOMOPT, set = 123457

x = FLTARR(n, m)

x(*) = RANDOM(m*n, /Normal)

x = TRANSPOSE(x)

stats = MVAR_NORMALITY(x, Sum_Weights = sw, Sum_Freq = sf, $

 Means = means, R_Matrix = r_mat)

PRINT, "Sum of Frequencies =", sf, Format = "(A25, I4)"

 Sum of Frequencies = 150

PRINT, "Sum of the weights =", sw, Format = "(A25, F8.3)"

 Sum of the weights = 150.000

FOR i = 0, 12 DO $

 PM, i, stats(i), Format = "(I5, F10.2)"

 0 0.73

 1 1.36

 2 18.62

 3 0.99

S W b W bW p p= +1
2

1 2
2

2, ,� � � �

352 Chapter 7: Goodness of Fit PV-WAVE:IMSL Statistics Reference

 4 -2.37

 5 32.67

 6 34.54

 7 1.27

 8 -1.48

 9 0.14

 10 1.62

 11 8.24

 12 0.02

RANDOMNESS_TEST Function
Performs a test for randomness.

Usage

result = RANDOMNESS_TEST(x, n_run)

Input Parameters

x — One-dimensional array containing the data.

n_run — Length of longest run for which tabulation is desired. For keywords
Pairs_Counts, Dsquare_Counts, and Dcube_Counts, n_run stands for the num-
ber of equiprobable cells into which the statistics are to be tabulated.

Returned Value

result — The probability of a larger chi-squared statistic for testing the null hy-
pothesis of a uniform distribution.

Input Keywords

Double — If present and nonzero, double precision is used.

Pairs_Lag — The lag to be used in computing the pairs statistic. Keywords
Pairs_Lag and Pairs_Counts must be used together.

RANDOMNESS_TEST Function 353

Output Keywords

Exactly one of these options is used to specify which test is to be performed.

Runs_Counts — Named variable into which an array of size N_ELEMENTS(x)
containing the counts of the number of runs up each length is stored. The Runs
Test is the default test, however, to return the counts and covariances, the
Runs_Counts keyword must be used. Keywords Runs_Counts and Covariances
must be used together. Keywords Runs_Counts, Pairs_Counts,
Dsquare_Counts, and Dcube_Counts can not be used together.

Covariances — Named variable into which an array of size N_ELEMENTS(x)
by N_ELEMENTS(x) containing the variances and covariances of the counts is
stored. Keywords Runs_Counts and Covariances must be used together.

Pairs_Counts — Named variable into which an array of size n_run by n_run
containing the count of the number of pairs in each cell is stored. The lag to be
used in computing the pairs statistic is stored in Pairs_Lag. Pairs (X(i),
X(i + Pairs_Lag)) for i = 0,… , N – Pairs_Lag – 1 are tabulated, where N is
the total sample size. Keywords Pairs_Counts and Pairs_Lag must be used to-
gether. Keywords Pairs_Counts, Runs_Counts, Dsquare_Counts, and
Dcube_Counts can not be used together.

Dsquare_Counts — Named variable into which an array of length n_run con-
taining the tabulations for the d 2 test is stored. Keywords Dsquare_Counts,
Runs_Counts, Pairs_Counts, and Dcube_Counts can not be used together

Dcube_Counts — Named variable into which an array of length n_run by
n_run by n_run containing the tabulations for the triplets test is stored. Key-
words Runs_Counts, Pairs_Counts, Dsquare_Counts, and Dcube_Counts can
not be used together.

Chisq — Named variable into which the Chi-squared statistic for testing the
null hypothesis of a uniform distribution is stored.

Df — Named variable into which the degrees of freedom for chi-squared is
stored.

Keyword Test to be Perfprmed

Runs_Counts with Covariances Runs Test

Pairs_Counts with Pairs_Lag Pairs Test

Dsquare_Counts d2 Test

Dcube_Counts Triplets Test

354 Chapter 7: Goodness of Fit PV-WAVE:IMSL Statistics Reference

If Runs_Counts is specified:

Runs_Expect — Named variable into which an array of length n_run contain-
ing the expected number of runs of each length is expected is stored. This key-
word is optional if Runs_Counts is used.

If Pairs_Counts, Dsquare_Counts, or Dcube_Counts is specified:

Expect — Named variable into which the expected number of counts for each
cell is stored. This keyword is optional only if one of the keywords
Pairs_Counts, Dsquare_Counts, or Dcube_Count is used. Keywords
Runs_Counts and Expect can not be used together.

Discussion

Runs Up Test

Function RANDOMNESS_TEST performs one of four different tests for ran-
domness. Input keyword Runs_Counts computes statistics for the runs up test.
Runs tests are used to test for cyclical trend in sequences of random numbers. If
the runs down test is desired, each observation should first be multiplied by −1
to change its sign, and Runs_Counts used with the modified vector of observa-
tions.

Runs_Counts first tallies the number of runs up (increasing sequences) of each
desired length. For i = 1, …, r − 1, where r = n_run, Runs_Counts(i) contains
the number of runs of length i. Runs_Counts(n_run) contains the number of
runs of length n_run or greater. As an example of how runs are counted, the se-
quence (1, 2, 3, 1) contains 1 run up of length 3, and one run up of length 1.

After tallying the number of runs up of each length, Runs_Counts computes the
expected values and the covariances of the counts according to methods given
by Knuth (1981, pages 65(67). Let R denote a vector of length n_run containing
the number of runs of each length so that the i-th element of R, ri, contains the
count of the runs of length i. Let ∑R denote the covariance matrix of R under
the null hypothesis of randomness, and let µR denote the vector of expected val-
ues for R under this null hypothesis, then an approximate chi-squared statistic
with n_run degrees of freedom is given as

In general, the larger the value of each element of µR, the better the chi-squared

χ µ µ2 1= − ∑ −−() ()R RR
T

R R

RANDOMNESS_TEST Function 355

approximation.

Pairs Test

Pairs_Counts computes the pairs test (or the Good’s serial test) on a hypothe-
sized sequence of uniform (0,1) pseudorandom numbers. The test proceeds as
follows. Subsequent pairs (X(i), X(i + Pairs_Lag)) are tallied into a k × k ma-
trix, where k = n_run. In this tally, element (j, m) of the matrix is incremented,
where

where l = Pairs_Lag, and the notation represents the greatest integer func-
tion, Y is the greatest integer less than or equal to Y, where Y is a real number.
If
l = 1, then i = 1, 3, 5, …, n − 1. If l > 1, then i = 1, 2, 3, …, n − l, where n is
the total number of pseudorandom numbers input on the current usage of
Pairs_Counts (i.e., n = N_ELEMENTS(x)).

Given the tally matrix in Pairs_Counts, chi-squared is computed as

where e = ∑oij/k
2, and oij is the observed count in cell (i, j) (oij = Pairs_Counts

(i, j)).

Because pair statistics for the trailing observations are not tallied on any call,
the user should use Pairs_Counts with N_ELEMENTS(x) as large as possible.
For Pairs_Lag < 20 and N_ELEMENTS(x) = 2000, little power is lost.

d 2 Test

Dsquare_Counts computes the d 2 test for succeeding quadruples of hypothe-
sized pseudorandom uniform (0, 1) deviates. The d 2 test is performed as fol-
lows. Let X1, X2, X3, and X4 denote four pseudorandom uniform deviates, and
consider

D2 = (X3 – X1)2 + (X4 – X2)2

j kX i

m kX i l

= +

= + +

()

()

1

1

χ2
2

0

1
=

−
∑
=

− ()

,

o e

e
ij

i j

k

356 Chapter 7: Goodness of Fit PV-WAVE:IMSL Statistics Reference

The probability distribution of D2 is given as

when D2 ≤1, where π denotes the value of pi. If D2 > 1, this probability is given
as

See Gruenberger and Mark (1951) for a derivation of this distribution.

For each succeeding set of 4 pseudorandom uniform numbers input in x, d 2 and
the cumulative probability of d 2 (Pr(D 2 ≤ d 2)) are computed. The resulting
probability is tallied into one of k = n_run equally spaced intervals.

Let n denote the number of sets of four random numbers input (n = the total
number of observations/4). Then, under the null hypothesis that the numbers in-
put are random uniform (0, 1) numbers, the expected value for each element in
Dsquare_Counts is e = n/k. An approximate chi-squared statistic is computed as

where oi = Dsquare_Counts(i) is the observed count. Thus, χ2 has k − 1 degrees
of freedom, and the null hypothesis of pseudorandom uniform (0, 1) deviates is
rejected if χ2 is too large. As n increases, the chi-squared approximation be-
comes better. A useful generalization is that e > 5 yields a good chi-squared ap-
proximation.

Pr(D d d
d d2 2 2

3 48

3 2
≤ = − +) π

Pr(D d d d

d d
d d

d

2 2 2 2

2
3
2 4

2
2

1

3
2 4 1

8
1

3 2
4

1
1

1

≤ = + − + −

+ − − −
−

�

�

����

�

�

����

) ()

()
arctan

π

χ2
2

0

1
= −

∑
=

− ()o e

e
i

i

k

RANDOMNESS_TEST Function 357

Triplets Test

Dcube_Counts computes the triplets test on a sequence of hypothesized pseudo-
random uniform(0, 1) deviates. The triplets test is computed as follows:
Each set of three successive deviates, X1, X2, and X3, is tallied into one of m3
equal sized cubes, where m = n_run. Let i = [mX1] + 1, j = [mX2] + 1, and k =
[mX3] + 1. For the triplet (X1, X2, X3), Dcube_Counts(i, j, k) is incremented.

Under the null hypothesis of pseudorandom uniform(0, 1) deviates, the m3 cells
are equally probable and each has expected value e = n/m3, where n is the num-
ber of triplets tallied. An approximate chi-squared statistic is computed as

where oijk = Dcube_Counts(i, j, k).

The computed chi-squared has m3– 1 degrees of freedom, and the null hypothe-
sis of pseudorandom uniform (0, 1) deviates is rejected if χ2 is too large.

Example 1

The following example illustrates the use of the runs test on 104 pseudo-ran-
dom uniform deviates. In the example, 2000 deviates are generated for each use
of Runs_Counts. Since the probability of a larger chi-squared statistic is 0.1872,
there is no strong evidence to support rejection of this null hypothesis of ran-
domness.

PRO print_results, n_run, num, rc, re, cov, chisq, df, p

 PRINT, " runs_count"

 PRINT, num + 1, Format = "(6I5)"

 PRINT, rc, Format = "(6I5)"

 PRINT

 PRINT, " runs_expect"

 PRINT, num + 1, Format = "(6I7)"

 PRINT, re, Format = "(6F7.1)"

 PRINT

 PRINT, " covariances"

χ2
2

0

1
=

−
∑

=

− ()

, ,

o e

e
ijk

i j k

k

358 Chapter 7: Goodness of Fit PV-WAVE:IMSL Statistics Reference

 PRINT, num + 1, Format = "(7X, 6I8)"

 FOR i = 0, n_run - 1 DO $

 PRINT, num(i) + 1, cov(i, *), Format = "(I8, 6F8.1)"

 PRINT

 PRINT, "chisq =", chisq

 PRINT, "df =", df

 PRINT, "pvalue =", p

END

nran = 10000

n_run = 6

num = INDGEN(n_run)

RANDOMOPT, set = 123457

x = RANDOM(nran, /Uniform)

p = RANDOMNESS_TEST(x, n_run, Runs_Counts = rc, $

 Covariances = cov, Chisq = chisq, $

 Df = df, Runs_Expect = re)

print_results, n_run, num, rc,re,cov,chisq, df, p

 runs_count

 1 2 3 4 5 6

 1709 2046 953 260 55 4

 runs_expect

 1 2 3 4 5 6

 1667.3 2083.4 916.5 263.8 57.5 11.9

 covariances

 1 2 3 4 5 6

 1 1278.2 -194.6 -148.9 -71.6 -22.9 -6.7

 2 -194.6 1410.1 -490.6 -197.2 -55.2 -14.4

 3 -148.9 -490.6 601.4 -117.4 -31.2 -7.8

 4 -71.6 -197.2 -117.4 222.1 -10.8 -2.6

 5 -22.9 -55.2 -31.2 -10.8 54.8 -0.6

 6 -6.7 -14.4 -7.8 -2.6 -0.6 11.7

RANDOMNESS_TEST Function 359

chisq = 8.76515

df = 6.00000

pvalue = 0.187223

Example 2

The following example illustrates the calculations of the Pairs_Counts statistics
when a random sample of size 104 is used and the Pairs_Lag is 1. The results
are not significant.

PRO print_results, n_run, num, pc, expect, chisq, df, p

 PRINT, " pairs_count"

 PRINT, num + 1, Format = "(5X, 10I5)"

 FOR i = 0, n_run - 1 DO $

 PRINT, num(i) + 1, pc(i, *), Format = "(I5, 10I5)"

 PRINT

 PRINT, "expect =", expect

 PRINT, "chisq =", chisq

 PRINT, "df =", df

 PRINT, "pvalue =", p

END

nran = 10000

n_run = 10

num = INDGEN(n_run)

lag = 5

RANDOMOPT, set = 123467

x = RANDOM(nran, /Uniform)

p = RANDOMNESS_TEST(x, n_run, Pairs_Counts = pc, $

 Pairs_Lag = lag, Chisq = chisq, $

 Df = df, Expect = expect)

print_results, n_run, num, pc, expect, chisq, df, p

 pairs_count

 1 2 3 4 5 6 7 8 9 10

360 Chapter 7: Goodness of Fit PV-WAVE:IMSL Statistics Reference

 1 112 82 95 118 103 103 113 84 90 74

 2 104 106 109 108 101 98 102 92 109 88

 3 88 111 86 106 112 79 103 105 106 101

 4 91 110 108 92 88 108 113 93 105 114

 5 104 105 103 104 101 94 96 87 93 104

 6 98 104 103 104 79 89 92 104 92 100

 7 103 91 97 101 116 83 118 118 106 99

 8 105 105 111 91 93 82 100 104 110 89

 9 92 102 82 101 94 128 102 110 125 98

 10 79 99 103 98 104 101 93 93 98 105

expect = 99.9500

chisq = 104.860

df = 99.0000

pvalue = 0.324242

Example 3

In the following example, 2000 observations generated using the routine RAN-
DOM are input to Dsquare_Counts in one call. In the example, the null hy-
pothesis of a uniform distribution is not rejected.

PRO print_results, n_run, num, dc, expect, chisq, df, p

 PRINT, " dsquare_counts"

 PRINT, num + 1, Format = "(6I5)"

 PRINT, dc, Format = "(6I5)"

 PRINT

 PRINT, "expect =", expect

 PRINT, "chisq =", chisq

 PRINT, "df =", df

 PRINT, "pvalue =", p

END

nran = 2000

n_run = 6

RANDOMNESS_TEST Function 361

num = INDGEN(n_run)

RANDOMOPT, set = 123457

x = RANDOM(nran, /Uniform)

p = RANDOMNESS_TEST(x, n_run, Chisq = chisq, Df = df, $

 Expect = expect, Dsquare_Counts = dc)

print_results, n_run, num, dc, expect, chisq, df, p

 dsquare_counts

 1 2 3 4 5 6

 87 84 78 76 92 83

expect = 83.3333

chisq = 2.05600

df = 5.00000

pvalue = 0.841343

Example 4

In the following example, 2001 deviates generated by the routine RANDOM are
input to Dcube_Counts, and tabulated in 27 equally sized cubes. In the example,
the null hypothesis is not rejected.

PRO print_results, n_run, num, dc, expect, chisq, df, p

 FOR j = 0, n_run - 1 DO BEGIN

 PRINT, " dcube_counts"

 PRINT, num + 1, Format = "(5X, 3I5)"

 FOR i = 0, n_run - 1 DO $

 PRINT, num(i) + 1, dc(j, i, *), Format = "(I5, 3I5)"

 PRINT

 ENDFOR

 PRINT, "expect =", expect

 PRINT, "chisq =", chisq

 PRINT, "df =", df

 PRINT, "pvalue =", p

END

362 Chapter 7: Goodness of Fit PV-WAVE:IMSL Statistics Reference

nran = 2001

n_run = 3

num = INDGEN(n_run)

RANDOMOPT, set = 123457

x = RANDOM(nran, /Uniform)

p = RANDOMNESS_TEST(x, n_run, Chisq = chisq, Df = df, $

 Expect = expect, Dcube_Counts = dc)

print_results, n_run, num, dc, expect, chisq, df, p

 dcube_counts

 1 2 3

 1 26 27 24

 2 20 17 32

 3 30 18 21

 dcube_counts

 1 2 3

 1 20 16 26

 2 22 22 27

 3 30 24 26

 dcube_counts

 1 2 3

 1 28 30 22

 2 23 24 22

 3 33 30 27

expect = 24.7037

chisq = 21.7631

df = 26.0000

pvalue = 0.701585

363

CHAPTER

8

Time Series and Forecasting

Contents of Chapter

ARMA Models

Computes least-squares or method-of-
moments estimates of parameters and
optionally computes forecasts and their
associated probability limits ARMA Function

Performs differencing on a
time seriesDIFFERENCE Function

Perform a Box-Cox
transformation........................ BOXCOXTRANS Function

Sample autocorrelation
function AUTOCORRELATION Function

Sample partial autocorrelation
function .. PARTIAL_AC Function

Lack-of-fit test based on the
corrleation function LACK_OF_FIT Function

Compute estimates of the parameters of
a GARCH(p,q) model GARCH Function

Performs Kalman filtering and
evaluates the likelihood function
for the statespace model KALMAN Procedure

364 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

Introduction
The routines in this chapter assume the time series does not contain any missing
observations. If missing values are present, they should be set to NaN (see the
routine MACHINE), and the routine will return an appropriate error message.
To enable fitting of the model, the missing values must be replaced by appropri-
ate estimates.

General Methodology

A major component of the model identification step concerns determining if a
given time series is stationary. The sample correlation functions computed by
routines AUTOCORRELATION (page 391), and PARTIAL_AC (page 395)
may be used to diagnose the presence of nonstationarity in the data, as well as
to indicate the type of transformation1 require to induce stationarity. The fami-
ly of power transformations provided by routine BOXCOXTRANS (page 387)
coupled with the ability to difference the transformed data using routine
DIFFERENCE (page 382) affords a convenient method of transforming a wide
class of nonstationary time series to stationarity.

The “raw” data, transformed data, and sample correlation functions also pro-
vide insight into the nature of the underlying model. Typically, this information
is displayed in graphical form via time series plots, plots of the lagged data, and
various correlation function plots.

The observed time series may also be compared with time series generated from
various theoretical models to help identify possible candidates for model fit-
ting. The routine RANDOM_ARMA may be used to generate a time series ac-
cording to a specified autoregressive moving average model.

Time Domain Methodology

Once the data are transformed to stationarity, a tentative model in the time do-
main is often proposed and parameter estimation1, diagnostic checking and
forecasting are performed.

ARIMA Model (Autoregressive Integrated Moving Average)

A small, yet comprehensive, class of stationary time-series models consists of
the nonseasonal ARMA processes defined by

φ(B) (Wt − µ) = θ(B)At, t ∈ Z

where Z = {..., −2, −1, 0, 1, 2, ...} denotes the set of integers, B is the backward
shift operator defined by BkWt = Wt−k, µ is the mean of Wt, and the following

Introduction 365

equations are true:

φ(B) = 1 − φ1B − φ2B2 − ... − φpBp, p ≥ 0

θ(B) = 1 − θ1B − θ2B
2 − ... − θqBq, q ≥ 0

The model is of order (p, q) and is referred to as an ARMA (p, q) model.

An equivalent version of the ARMA (p, q) model is given by

φ(B) Wt = θ0 + θ(B)At, t ∈ Z

where θ0 is an overall constant defined by the following:

See Box and Jenkins (1976, pp. 92−93) for a discussion of the meaning and
usefulness of the overall constant.

If the “raw” data, {Zt}, are homogeneous and nonstationary, then differencing
using DIFFERENCE (page 382) induces stationarity, and the model is called
ARIMA (AutoRegressive Integrated Moving Average). Parameter estimation is
performed on the stationary time series Wt, = ∇dZt , where ∇d = (1 − B)d is the
backward difference operator with period 1 and order d, d > 0.

Typically, the method of moments includes keyword Moments in a call to func-
tion ARMA (page 366) for preliminary parameter estimates. These estimates
can be used as initial values into the least-squares procedure by including key-
word Lsq in a call to function ARMA. Other initial estimates provided by the
user can be used. The least-squares procedure can be used to compute condi-
tional or unconditional least-squares estimates of the parameters, depending on
the choice of the backcasting length.

θ µ φ0
1

1= − ∑
�
��

�
��=

i
i

p

366 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

ARMA Function
Computes method-of-moments or least-squares estimates of parameters for a
nonseasonal ARMA model.

Usage

result = ARMA(z, p, q)

Input Parameters

z — One-dimensional array containing the observations.

p — Number of autoregressive parameters.

q — Number of moving average parameters.

Returned Value

result — An array of length 1 + p + q with the estimated constant, AR, and
MA parameters. If No_Constant is specified, the 0-th element of this array is
0.0.

Input Keywords

Double — If present and nonzero, double precision is used.

No_Constant — If present and nonzero, the time series is not centered about its
mean. Keywords No_Constant and Constant cannot be used together.

Constant — If present and nonzero, the time series is centered about its mean.
Keywords No_Constant and Constant cannot be used together.

Ar_Lags — One-dimensional array of length p containing the order of the non-
zero autoregressive parameters. The elements of Ar_Lags must be greater than
or equal to 1.

Default: Ar_Lags = [1, 2, ..., p]

Ma_Lags — One-dimensional array of length q containing the order of the non-
zero moving average parameters. The elements of Ma_Lags must be greater
than or equal to 1.

Default: Ma_Lags = [1, 2, ..., q]

ARMA Function 367

Moments — If present and nonzero, the autoregressive and moving average
parameters are estimated by a method-of-moments procedure. Keywords
Moments and Lsq cannot be used together. (Default)

Lsq — If present and nonzero, the autoregressive and moving average parame-
ters are estimated by a least-squares procedure. Keywords Moments and Lsq
cannot be used together.

Lgth_Backcast — Specifies the maximum length of backcasting. Must be
greater than or equal to zero. Keywords Lgth_Backcast and Tol_Backcast must
be used together.

Default: Lgth_Backcast = 10

Tol_Backcast — Specifies the tolerance level used to determine convergence of
the backcast algorithm. Typically, Tol_Backcast is set to a fraction of an esti-
mate of the standard deviation of the time series. Keywords Lgth_Backcast and
Tol_Backcast must be used together.

Default: Tol_Backcast = 0.01 x standard deviation of l

Tol_Convergence — Tolerance level used to determine convergence of the non-
linear least-squares algorithm. Keyword Tol_Convergence represents the
minimum relative decrease in sum of squares between two iterations required to
determine convergence. Hence, Tol_Convergence must be greater than or equal
to zero.

Default: max {10–10, ε2 / 3} for single precision,
max {10–20, ε2 / 3} for double precision, where ε is machine precision.

Err_Rel — Stopping criterion for use in the nonlinear equation solver used in
both the method-of-moments and least-squares algorithms.

Default: Err_Rel = 100 x ε, where ε is machine precision

Itmax — Maximum number of iterations allowed in the nonlinear equation
solver used in both the method-of-moments and least-squares algorithms.

Default: Itmax = 200

Mean_Est — Initial estimate of the mean of the time series z.

Default:

Init_Est_Ar — Array of length p containing preliminary estimates of the
autoregressive parameters, internally. Keywords Init_Est_Ar and Init_Est_Ma

Mean_Est zt /n
t 1=

n

∑=

368 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

must be used together and are only applicable if Lsq is also present and
nonzero.

Init_Est_Ma — Array of length q containing preliminary estimates of the mov-
ing average parameters. Keywords Init_Est_Ar and Init_Est_Ma must be used
together and are only applicable if Lsq is also present and nonzero.

The following keywords are used to forecast up to N_Predict steps ahead and
the information necessary to obtain confidence intervals:

N_Predict — Maximum lead time for forecasts. Keyword N_Predict must be
greater than zero. Keywords Forecast and N_Predict must be used together.

Confidence — Value in the exclusive interval (0, 100) used to specify the confi-
dence level of the forecasts. Typical choices for Confidence are 90.0, 95.0, and
99.0.

Default: Confidence = 95.0

Backward_Origin — Maximum backward origin. Keyword Backward_Origin
must be greater than or equal to zero and less than or equal to
N_ELEMENTS(z) – (max(maxar, maxma)), where maxar = max(Ar_Lags) and
maxma = max(Ma_Lags).

Forecasts at origins N_ELEMENTS(z) – Backward_Origin through
N_ELEMENTS(z) are generated.

Default: Backward_Origin = 0

Output Keywords

Residual — Named variable into which an array of length
N_ELEMENTS(z) – (max(Ar_Lags)) + Lgth_Backcast containing the residuals
(including backcasts) at the final parameter estimate point in the first
N_ELEMENTS(z) – (max(Ar_Lags)) + nb, where nb is the number of values
backcast is stored.

Param_Est_Cov — Named variable into which an array, containing the covari-
ance matrix of the final parameter estimates, is stored. The array is of size np x
np, where np = p + q + 1 if z is centered about its mean and np = p + q if z is
not centered. The ordering of variables in Param_Est_Cov is Mean_Est,
Ar_lags, and Ma_lags.

Autocov — Named variable into which an array of length p + q + 2 containing
the variance and autocovariances of the time series z is stored. Keyword Auto-

ARMA Function 369

cov(0) contains the variance of the series z. Keyword Autocov(k) contains the
autocovariance of lag k, where k = 1, ..., p + q + 1.

Ss_Residual — Named variable into which the sum of squares of the random
error is stored.

Forecast — Named variable into which an array of length N_Predict x
(Backward_Origin + 3) containing the forecasts up to N_Predict steps ahead
and the information necessary to obtain confidence intervals is stored. Key-
words Forecast and N_Predict must be used together.

Discussion

Function ARMA computes estimates of parameters for a nonseasonal ARMA
model given a sample of observations, {Zt}, for t = 1, 2, ..., n, where
n = N_ELEMENTS(z). The user may choose either method of moments or least
squares. The default is method of moments.

The user chooses the method-of-moments algorithm with the keyword
Moments. The least-squares algorithm is used if Lsq is specified. If the user
wishes to use the least-squares algorithm, the preliminary estimates are the
method-of-moments estimates by default; otherwise, the user can input initial
estimates by specifying keywords Init_Est_Ar and Init_Est_Ma. The following
table lists the appropriate keywords for both the method-of-moments and least-
squares algorithm:

Method of
Moments

only
Least Squares only

Both Method of
Moments and
Least Squares

Moments Lsq Err_Rel

Constant (or No_Constant) Itmax
Ar_Lags Mean_Estimate

Ma_Lags Autocov
Lgth_Backcast Forecast

Tol_Backcast N_Predict
Tol_Convergence Confidence

Init_Est_Ar Backward_Origin
Init_Est_Ma

Residual
Param_Est_Cov

Ss_Residual

370 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

Method-of-moments Estimation

Suppose the time series {Zt } is generated by an ARMA(p, q) model of the form

for

Let

be the estimate of the mean µ of the time series {Zt}, where

equals the following:

The autocovariance function is estimated by

for k = 0, 1, ..., K, where K = p + q + 1. Note that

is an estimate of the sample variance.

Given the sample autocovariances, the function computes the method-of-
moments estimates of the autoregressive parameters using the extended Yule-
Walker equations as follows:

φ B()Zt θ0 θ B()At+=

t 0 1 2 ...,±,±,{ }∈

µ̂ Mean_Est=

µ̂

µ̂

µ for µ known

Zt

t 1=

n

∑
n

-------------- for µ unknown

=

σ̂ k() 1
n
--- Zt µ̂–() Zt k+ µ̂–()

t 1=

n k–

∑=

σ̂ 0()

Σ
ˆ

φ
ˆ

σ̂=

ARMA Function 371

where

The overall constant θ0 is estimated by the following:

The moving average parameters are estimated based on a system of nonlinear
equations given K = p + q + 1 autocovariances, σ(k) for k = 1, ..., K, and p
autoregressive parameters φi for i = 1, ..., p.

Let Z′t = φ(B)Zt. The autocovariances of the derived moving average process
Z′t = θ(B)At are estimated by the following relation:

The iterative procedure for determining the moving average parameters is based
on the relation

where σ(k) denotes the autocovariance function of the original Zt process.

Let τ = (τ0, τ1, ..., τq)T, f = (f0, f1, ..., fq)T, and

φ̂ φ̂1 … φ̂p, ,()
T

=

Σ
ˆ

ij σ̂ q i j–+() i j, , 1 … p, ,= =

σ̂i σ̂ q i+(),= i j, 1 … p, ,=

θ
ˆ

0

µ̂ for p = 0

µ̂ 1 φ̂i

i 1=

p

∑–

for p 0>

=

σ̂′ k()

σ̂ k() for p = 0

φ̂iφ̂j σ̂ k i j–+()()

j 0=

p

∑
i 0=

p

∑ for p 1,φ̂0 1–≡≥

=

σ k()
1 θ1

2 ... θq
2+ + +()σA

2 for k = 0

θk– θ1θk 1+ ... θq k– θq+ + +()σA
2 for k 1≥

=

372 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

T be a (q + 1) x (q + 1) matrix, where τj , fj , and T are as follows:

and

Then, the value of τ at the (i + 1)-th iteration is determined by the following:

τ i + 1 = τ i – (T i)–1 f i

The estimation procedure begins with the initial value

and terminates at iteration i when either |f i| is less than Err_Rel or i equals
Itmax. The moving average parameter estimates are obtained from the final esti-
mate of τ by setting

for j = 1, ..., q. The random error variance is estimated by the following:

τj
σA for j = 0

θj τ0⁄– for j = 1, ..., q

=

fj τiτi j+ σ̂′ j()–

q j–

∑= for j 0 1 … q, , ,=

τ0 τ1 … … τq

τ1 τ2 … τq 0

… … … 0 0

… … … … …
τq 0 0 0 0

τ0 … … τq

0 τ0 … τq 1–

0 0 … …
… … … …
0 0 0 τ0

+=

τ0 σ̂′ 0(), 0 … 0, ,()
T

=

θ̂j τj τ0⁄–=

σ̂A
2

σ̂ 0() φ̂iσ̂ i()

i 1=

p

∑– for q = 0

τ0
2

for q 0>

=

ARMA Function 373

See Box and Jenkins (1976, pp. 498–500) for a description of a function that
performs similar computations.

Least-squares Estimation

Suppose the time series {Zt } is generated by a nonseasonal ARMA model of
the form

φ (B) (Zt – µ) = θ (B) At for t ∈ { 0, ±1, ±2, ... }

where B is the backward-shift operator, µ is the mean of Zt , and

with p autoregressive and q moving average parameters. Without loss of gener-
ality, the following is assumed:

so that the nonseasonal ARMA model is of order (p′, q′), where

and .

Note that the usual hierarchial model assumes the following:

Consider the sum-of-squares function

φ B() 1 φ1B
lφ 1()

– φ2B
lφ 2()

– ...– φpB
lφ p()

–= for p 0≥

θ B() 1 θ1B
lθ 1()

– θ2B
lθ 2()

– ...– θqB
lθ q()

–= for q 0≥

1 lφ 1() lφ 2() ... lφ p()≤ ≤≤≤

1 lθ 1() lθ 2() ... lθ q()≤ ≤≤≤

p ′ lφ p()= q ′ lθ q()=

lφ i)(i= , 1 i p≤ ≤

lθ j() j= , 1 j q≤ ≤

ST µ φ θ, ,() At[]2

n

∑=

374 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

where

and T = Lgth_Backcast is the length of backcasting from the beginning of the
series. The random errors {At } are assumed to be independent and identical dis-
tributed N(0, σA

2) random variables. Hence, the log-likelihood function is given
by

where f (µ, φ, θ) is a function of µ, φ, and θ.

For T = 0, the log-likelihood function is conditional on the past values of both
Zt and At required to initialize the model. The method of selecting these initial
values usually introduces transient bias into the model (Box and Jenkins 1976,
pp. 210–211). For T = infinity, this dependency vanishes, and the estimation
problem concerns maximization of the unconditional log-likelihood function.
Box and Jenkins (1976, p. 213) argue that

 dominates .

The parameter estimates that minimize the sum-of-squares function are called
least-squares estimates. For large n, the unconditional least-squares estimates
are approximately equal to the maximum likelihood-estimates.

In practice, a finite value of T enables sufficient approximation of the uncondi-
tional sum-of-squares function. The values of [At] needed to compute the
unconditional sum of squares are computed iteratively with initial values of Zt
obtained by backcasting. The residuals (including backcasts), estimate of ran-
dom error variance, and covariance matrix of the final parameter estimates also
are computed. ARIMA parameters can be computed using function DIFFER-
ENCE on page 382, together with ARMA.

Forecasting Option

The Box-Jenkins forecasts and their associated confidence intervals for a non-
seasonal ARMA model are computed given a sample of n = N_ELEMENTS(z)
{Zt} for t = 1, 2, ..., n.

Suppose the time series {Zt} is generated by a nonseasonal ARMA model of
the form

At[] E At µ φ θ Z, , ,()[]=

l µ φ θ σA, , ,() f µ φ θ, ,() n ln σA()–
ST µ φ θ, ,()

2σA
2

--------------------------–=

S∞ µ φ θ, ,() 2σA
2()⁄ l µ φ θ σA

2, , ,()

ARMA Function 375

φ (B) Zt = θ0 + θ (B) At

for t ∈ { 0, ±1, ±2, ... },

where B is the backward-shift operator, θ0 is the constant, and

with p autoregressive and q moving average parameters. Without loss of gener-
ality, the following is assumed:

so that the nonseasonal ARMA model is of order (p′, q′), where

 and .

Note that the usual hierarchial model assumes the following:

The Box-Jenkins forecast at origin t for lead time l of Zt + l is defined in terms
of the difference equation

φ B() 1 φ1B
lφ 1()

– φ2Blφ 2()– ...– φpBlφ p()–=

θ B() 1 θ1B
lθ 1()

– θ2Blθ 2()– ...– θqBlθ q()–=

1 lφ 1() lφ 2() ... lφ p()≤ ≤≤≤

1 lθ 1() lθ 2() ... lθ q()≤ ≤≤≤

p′ lθ p()= q ′ lθ q()=

lφ i)(i= , 1 i p≤ ≤

lθ j() j= , 1 j q≤ ≤

Z
ˆ

t l() θ0 φ1 Zt l lφ 1()–+[] ... φp Zt l lφ p()–+[] At l+[] ...–+ + + +=

θ1 At l lθ 1()–+[] At l+[]– θ1 At l lθ 1()–+[]– ...– θq At l lθ q()–+[]–

376 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

where the following is true:

The 100(1 – α)-percent confidence interval for Zt + l is given by

where

is the 100 (1 – α / 2)-percentile of the standard normal distribution, σA is the
standard deviation of the random error, and ψj is defined as follows:

In this equation, φi = 0 for i > p and θj = 0 for j > q. Note that the forecasts are
computed for lead times l = 1, 2, ..., L at origins t = (n – b), (n – b + 1), ..., n,
where
L = N_Predict and b = Backward_Origin.

The Box-Jenkins forecasts minimize the mean-square error

.

Also, the forecasts are easily updated according to the following equation:

Zt k+[] Zt k+ for k = 0 1 2 ...,–,–,

Z
ˆ

t k() for k = 1, 2, ...

=

At k+[] Zt k+ Z
ˆ

t k 1–+ 1() for– k = 0 1 2 ...,–,–,
0 for k = 1, 2, ...

=

Z
ˆ

t l() z 1 α 2⁄–() ψj
2

j 0=

l 1–

∑

 1 2⁄

σA±

z 1 α 2⁄–()

ψ j

1 for j 0=

φiψj i– θ j–
i 1=

j

∑ for j 0>

=

E Zt l+ Z
ˆ

t l()–
2

Z
ˆ

t 1+ l() Z
ˆ

t l 1+() ψ lAt 1++=

ARMA Function 377

This approach and others are discussed in Chapter 5 of Box and Jenkins (1976).

Example 1

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set
for this example consists of the number of sunspots observed from 1770
through 1869 and is shown in Figure 8-1. The method-of-moments estimates

, and

for the ARMA(2,1) model are

where Zt is “raw” data and the errors At are independently and identical nor-
mally distributed with mean zero and variance σ2

A.

temp = STATDATA(2)

; Get the Wolfer Sunspot Data.

z = TEMP(21:120, 1)

; Use only 100 observations, 1770-1869.

years = FINDGEN(100) + 1770

PLOT, years, z, XStyle = 1, Psym = -6, $
Title = ’Wolfer Sunspot Data’, XTitle = ’Year’, $
YTitle = ’Number of Sunspots’

; Plot the data.

p = 2

q = 1

parameters = ARMA(z, p, q)

; Perform time-series analysis.

PRINT, "AR estimates:", parameters(1), parameters(2)

AR estimates: 1.24426 -0.575149

PRINT, "MA estimate :", parameters(3)

MA estimate : -0.124094

θ̂0 φ̂1 φ̂2, θ̂1

Zt θ0 φ1Zt 1– φ2Zt 2– θ1At 1– At+–+ +=

378 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

Figure 8-1 Plot of Wolfer Sunspot Data.

Example 2

The data for this example are the same as that for the initial example. Prelimi-
nary method-of-moments estimates are computed by default, and the method of
least squares is used to find the final estimates.

temp = STATDATA(2)

; Get the Wolfer Sunspot Data.

z = TEMP(21:120, 1)

; Use only 100 observations, 1770-1869.

parameters = ARMA(z, 2, 1, /Lsq, Tol_Convergence = .125)

; Perform time-series analysis using method of moments. The
; warning error can be ignored in this case.

PRINT, "AR estimates:", parameters(1), $
parameters(2)

AR estimates: 1.39257 -0.732948

PRINT, "MA estimate :", parameters(3)

MA estimate : -0.137512

ARMA Function 379

Example 3

Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set
for this example consists of the number of sunspots observed from 1770
through 1869. Function ARMA computes forecasts and 95-percent confidence
limits for the forecasts for an ARMA(2, 1) model fit using function ARMA
with the method-of-moments option. With Backward_Origin = 3, columns zero
through three of Forecast provide forecasts given the data through 1866, 1867,
1868, and 1869. Column five gives the deviations from the forecast for comput-
ing confidence limits, and column six gives the psi weights, which can be used
to update forecasts when more data is available. For example, the forecast for
the 102-nd observation (year 1871) given the data through the 100-th observa-
tion (year 1869) is 77.21; 95-percent confidence limits are given by

.

After observation 101 (Z101 for year 1870) is available, the forecast can be
updated by using

with the psi weight (ψ1 = 1.37) and the one-step-ahead forecast error for obser-
vation 101 (Z101 – 83.72) to give the following:

77.21 + 1.37 x (Z101 – 83.72)

Since this updated forecast is one step ahead, the 95-percent confidence limits
are now given by the forecast

.

First, define a procedure to output the results:

PRO print_results, parameters, forecast

PRINT, "Method-of-moments initial estimates:"

PRINT, "AR estimates:", parameters(1), parameters(2)

PRINT, "MA estimate :", parameters(3)

PRINT

lead_time = INDGEN(12) + 1

forecast = [[lead_time], [forecast]]

PRINT, "Forecasts from ..."

77.21 56.30+−

Z
ˆ

t 1+ l() Z
ˆ

t l+1() ψl Zt 1+ Z
ˆ

t 1()–+=

33.22+−

380 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

PRINT, "lead time", " 1866", " 1867", $
" 1868", " 1869", " Deviat.", " Psi"

PM, forecast, Format = "(i6, 3x, 6f9.4)"

END

temp = STATDATA(2)

; Get the Wolfer Sunspot Data.

z = TEMP(21:120, 1)

; Use only 100 observations, 1770-1869.

parameters = ARMA(z, 2, 1, Itmax = 0, Err_Rel = 0.0, $
Forecast = forecast, N_Predict = 12, $
Backward_Origin = 3)

; Perform time-series analysis using method-of-moments.

print_results, parameters, forecast

Method-of-moments initial estimates:

AR estimates: 1.24426 -0.575149

MA estimate : -0.124094

Forecasts from ...

lead time 1866 1867 1868 1869 Deviat. Psi

 1 18.2833 16.6151 55.1893 83.7196 33.2179 1.3684

 2 28.9182 32.0189 62.7606 77.2092 56.2980 1.1274

 3 41.0101 45.8275 61.8922 63.4608 67.6168 0.6158

 4 49.9387 54.1496 56.4571 50.0987 70.6432 0.1178

 5 54.0937 56.5623 50.1939 41.3803 70.7515 -0.2076

 6 54.1282 54.7780 45.5268 38.2174 71.0869 -0.3261

 7 51.7815 51.1701 43.3221 39.2965 71.9074 -0.2863

 8 48.8417 47.7072 43.2631 42.4582 72.5337 -0.1687

 9 46.5335 45.4736 44.4577 45.7715 72.7498 -0.0452

 10 45.3524 44.6861 45.9781 48.0758 72.7653 0.0407

 11 45.2103 44.9909 47.1827 49.0371 72.7779 0.0767

 12 45.7128 45.8230 47.8072 48.9080 72.8225 0.0720

years = INDGEN(100) + 1770

PLOT, years, z, $
Psym = -6, Symsize = .5, $
XStyle = 1, $
XRange = [1770, 1885], $
YRange = [-50, 175], $
Title = ’Wolfer Sunspot Data’, $
XTitle = ’Year’, $
YTitle = ’Number of Sunspots’

; Plot the data along with the forecasted values with confidence intervals.

OPLOT, INDGEN(10) + 1870, forecast(*, 3), $

ARMA Function 381

Psym = 4, Symsize = .5

ERRPLOT, indgen(10) + 1870, $
forecast(*, 3) - forecast(*, 4), $
forecast(*, 3) + forecast(*, 4), $
Width = .005

The plot of the forecasts and the confidence limits from year 1869 are shown in
Figure 8-2.

Figure 8-2 Plot of sunspot data with predicted values and confidence
bands.

382 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

DIFFERENCE Function
Differences a seasonal or nonseasonal time series.

Usage

result = DIFFRENCE(z, periods)

Input Parameters

z — One-dimensional array containing the time series.

periods — One-dimensional array containing the periods at which z is to be
differenced.

Returned Value

result — One-dimensional array of length N_ELEMENTS (z) containing the
differenced series.

Input Keywords

Double — If present and nonzero, double precision is used.

Orders — One-dimensional array of length N_ELEMENTS(periods) contain-
ing the order of each difference given in periods. The elements of Orders must
be greater than or equal to 0.

Default: all the elements equal 1

Exclude_First or
First_To_Nan — If Exclude_First is present and nonzero, the first Num_Lost
observations are excluded from the solution due to differencing. The differenced
series is of length N_ELEMENTS(periods) – Num_Lost. If First_To_Nan is
specified, the first Num_Lost observations are set to NaN (Not a Number). This
is the default if neither Exclude_First nor First_To_Nan is specified.

Default: First_To_Nan

Output Keywords

Num_Lost — Named variable into which the number of observations “lost”
because of differencing the time series z is stored.

DIFFERENCE Function 383

Discussion

Function DIFFERENCE performs m = N_ELEMENTS(periods) successive
backward differences of period si = periods(i – 1) and di = Orders(i – 1)
for i = 1, ..., m on the n = N_ELEMENTS(x) observations {Zt} for
t = 1, 2, ..., n.

Consider the backward shift operator B given by

BkZt = Zt – k

for all k. Then, the backward difference operator with period s is defined by the
following:

Note that BsZt and ∆sZt are defined only for t = (s + 1), ..., n. Repeated differ-
encing with period s is simply

where d ≥ 0 is the order of differencing. Note that ∆d
s Zt is defined only for

t = (sd + 1), ..., n.

The general difference formula used in the function DIFFERENCE is given by

where nL represents the number of observations “lost” because of differencing
and NaN represents the missing value code. See MACHINE to retrieve missing
values. Note that

.

A homogeneous, stationary time series can be arrived at by appropriately differ-
encing a homogeneous, nonstationary time series (Box and Jenkins 1976, p. 85).
Preliminary application of an appropriate transformation followed by differenc-

∆sZt 1 Bs–()Zt Zt Zt s––= = for s 0≥

∆s
d

Zt 1 B
s

–()
d
Zt

d!
j! d j–()!
---------------------- 1–()j

B
sj

Zt

d

∑= =

Wt

NaN for t = 1, ..., nL

∆ s1

d1∆s2

d2 ... ∆sm

dmZt for t = nL 1, ..., n+

=

nL sj dj

j
∑=

384 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

ing of a series enables model identification and parameter estimation in the
class of homogeneous stationary ARMA.

Example 1

Consider the Airline Data (Box and Jenkins 1976, p. 531) consisting of the
monthly total number of international airline passengers from January 1949
through December 1960. The entire data, after taking a natural logarithm, are
shown in Figure 8-3. The plot shows a linear trend and a seasonal pattern with
a period of 12 months. This suggests that the data needs a nonseasonal differ-
ence operator, ∆1, and a seasonal difference operator, ∆12, to make the series
stationary. Function DIFFERENCE is used to compute

Wt = ∆1∆12Zt = (Zt – Zt – 12) – (Zt – 1 – Zt – 13)

for t = 14, 15, ..., 24.

ztemp = ALOG(STATDATA(4))

; Get the data set.

PLOT, INDGEN(144), ztemp, Psym = -6, Symsize = .5, $
YStyle = 1, Title = ’Complete Airline Data’, $
XTitle = ’Month (beginning 1949)’, $
YTitle = ’!8ln!3(thousands of Passengers)’

; Plot the complete data set.

z = ztemp(0:23)

periods = [1, 12]

difference = DIFFERENCE(z, periods)

; Call DIFFERENCE.

matrix = [[INDGEN(24)], [z], [difference]]

; Create a matrix of the data to make the output easier.

PM, matrix, Format = ’(i4, x, 2f7.1)’, $
Title = " I z(i) difference(i)"

; Output the results.

I z(i) difference(i)

 0 112.0 NaN

 1 118.0 NaN

 2 132.0 NaN

 3 129.0 NaN

 4 121.0 NaN

 5 135.0 NaN

 6 148.0 NaN

 7 148.0 NaN

DIFFERENCE Function 385

 8 136.0 NaN

 9 119.0 NaN

 10 104.0 NaN

 11 118.0 NaN

 12 115.0 NaN

 13 126.0 5.0

 14 141.0 1.0

 15 135.0 -3.0

 16 125.0 -2.0

 17 149.0 10.0

 18 170.0 8.0

 19 170.0 0.0

 20 158.0 0.0

 21 133.0 -8.0

 22 114.0 -4.0

 23 140.0 12.0

Figure 8-3 Plot of the complete data set for airline passengers.

Example 2

The data for this example is the same as that for the initial example. The first
Num_Lost observations are excluded from W due to differencing, and Num_Lost
also is output.

386 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

ztemp = STATDATA(4)

; Get the data set.

z = ztemp(0:23)

periods = [1, 12]

diff = DIFFERENCE(z, periods, $
/Exclude_First, Num_Lost = num_lost)

; Call DIFFERENCE.

num_valid = N_ELEMENTS(z) - num_lost

; Use Num_Lost to compute the number of rows in the result
; that have valid values.

matrix = [[INDGEN(num_valid)], [z(0:num_valid-1)], $
[DIFF(0:num_valid-1)]]

; Put the data in one matrix to make printing easier.

PM, matrix, Format = ’(i4, x, 2f7.1)’, $

 Title = " i z(i) DIFFERENCE(i)"

; Output the results.

i z(i) DIFFERENCE(i)

 0 112.0 5.0

 1 118.0 1.0

 2 132.0 -3.0

 3 129.0 -2.0

 4 121.0 10.0

 5 135.0 8.0

 6 148.0 0.0

 7 148.0 0.0

 8 136.0 -8.0

 9 119.0 -4.0

 10 104.0 12.0

Fatal Errors

STAT_PERIODS_LT_ZERO — Parameter periods (#) = #. All elements of
Periods must be greater than zero.

STAT_ORDER_NEGATIVE — Parameter order (#) = #. All elements of order
must be nonnegative.

STAT_Z_CONTAINS_NAN — Parameter z (#) = NaN; z cannot contain miss-
ing values. Other elements of z may be equal to NaN.

BOXCOXTRANS Function 387

BOXCOXTRANS Function
Performs a forward or an inverse Box-Cox (power) transformation.

Usage

 result = BOXCOXTRANS(z, power)

Input Parameters

z — One-dimensional array containing the observations.

power — Exponent parameter in the Box-Cox (power) transformation.

Returned Value

result — One-dimensional array containing the transformed data.

Input Keywords

Double — If present and nonzero, double precision is used.

S — Shift parameter in the Box-Cox (power) transformation. Parameter shift
must satisfy the relation min (z(i)) + S > 0.

Default: S = 0.0.

Inverse — If present and nonzero, the inverse transform is performed.

Discussion

Function BOXCOXTRANS performs a forward or an inverse Box-Cox (pow-
er) transformation of n = N_ELEMENTS(z) observations {Zt} for t = 0, 1, ..., n-
1.

The forward transformation is useful in the analysis of linear models or models
with nonnormal errors or nonconstant variance (Draper and Smith 1981, p.
222). In the time series setting, application of the appropriate transformation
and subsequent differencing of a series can enable model identification and pa-
rameter estimation in the class of homogeneous stationary autoregressive-mov-
ing average models. The inverse transformation can later be applied to certain
results of the analysis, such as forecasts and prediction limits of forecasts, in or-
der to express the results in the scale of the original data. A brief note concern-
ing the choice of transformations in the time series models is given in Box and
Jenkins (1976, p. 328).

388 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

The class of power transformations discussed by Box and Cox (1964) is defined
by

where Zt + ξ > 0 for all t. Since

the family of power transformations is continuous.

Let λ = power and ξ = S; then, the computational formula used by BOXCOX-
TRANS is given by

where Zt + ξ > 0 for all t. The computational and Box-Cox formulas differ only
in the scale and origin of the transformed data. Consequently, the general analy-
sis of the data is unaffected (Draper and Smith 1981, p. 225).

The inverse transformation is computed by

where {Zt} now represents the result computed by BOXCOXTRANS for a for-
ward transformation of the original data using parameters λ and ξ.

X
Z

Z
t

t

t

=
+ −

≠

+ =

�
��

�
ξ
λ

λ

ξ λ

λ� �

� �

1
0

0ln

lim ln
λ

λξ
λ

ξ
→

+ −
= +

0

1Z
Zt

t
� � � �

X
Z

Z
t

t

t

=
+ ≠

+ =

�
��
�

ξ λ

ξ λ

λ� �
� �

0

0ln

X
Z

Z
t

t

t

= − ≠
− =

����
1 0

0

/

()

λ ξ λ
ξ λexp

BOXCOXTRANS Function 389

Example 1

The following example performs a Box-Cox transformation with power = 2.0
on 10 data points.

power = 2.0

z = [1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0]

; Transform Data using Box Cox Transform

x = BOXCOXTRANS(z, power)

PM, x, Title = "Transformed Data"

Transformed Data

 1.00000

 4.00000

 9.00000

 16.0000

 25.0000

 30.2500

 42.2500

 56.2500

 64.0000

 100.000

Example 2

This example extends the first example—an inverse transformation is applied to
the transformed data to return to the orignal data values.

power = 2.0

z = [1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0]

; Transform Data using Box Cox Transform

x = BOXCOXTRANS(z, power)

PM, x, Title = "Transformed Data"

Transformed Data

 1.00000

 4.00000

 9.00000

 16.0000

 25.0000

 30.2500

 42.2500

 56.2500

 64.0000

390 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

 100.000

; Perform an Inverse Transform on the Transformed Data

y = BOXCOXTRANS(x, power, /inverse)

PM, y, Title = "Inverse Transformed Data"

Inverse Transformed Data

 1.00000

 2.00000

 3.00000

 4.00000

 5.00000

 5.50000

 6.50000

 7.50000

 8.00000

 10.0000

Fatal Errors

STAT_ILLEGAL_SHIFT — S = # and the smallest element of z is z(#) = #. S
plus z(#) = #. S + z(I) must be greater than 0 for i = 1, ..., N_ELEMENTS(z).
N_ELEMENTS(z) = #.

STAT_BCTR_CONTAINS_NAN — One or more elements of z is equal to NaN
(Not a number). No missing values are allowed. The smallest index of an ele-
ment of z that is equal to NaN is #.

STAT_BCTR_F_UNDERFLOW — Forward transform. power = #. S = #. The
minimum element of z is z(#) = #. (z(#)+ S) ^ power will underflow.

STAT_BCTR_F_OVERFLOW — Forward transformation. power = #. S = #. The
maximum element of z is z(#) = #. (z(#) + S) ^ power will overflow.

STAT_BCTR_I_UNDERFLOW — Inverse transformation. power = #. The mini-
mum element of z is z(#) = #. exp(z(#)) will underflow.

STAT_BCTR_I_OVERFLOW — Inverse transformation. power = #. The maxi-
mum element of z(#) = #. exp(z(#)) will overflow.

STAT_BCTR_I_ABS_UNDERFLOW — Inverse transformation. power = #. The
element of z with the smallest absolute value is z(#) = #. z(#) ^ (1/ power) will
underflow.

STAT_BCTR_I_ABS_OVERFLOW — Inverse transformation. power = #. The
element of z with the largest absolute value is z(#) = #. z(#) ^ (1/ power) will
overflow.

AUTOCORRELATION Function 391

AUTOCORRELATION Function
Computes the sample autocorrelation function of a stationary time series.

Usage

result = AUTOCORRELATION(x, lagmax)

Input Parameters

x — One-dimensional array containing the time series. N_ELEMENTS(x) must
be greater than or equal to 2.

lagmax — Scalar integer containing the maximum lag of autocovariance, auto-
correlations, and standard errors of autocorrelations to be computed. lagmax
must be greater than or equal to 1 and less than N_ELEMENTS(x).

Returned Value

result — One-dimensional array of length lagmax + 1 containing the autocorre-
lations of the time series x. The 0-th element of this array is 1. The k-th ele-
ment of this array contains the autocorrelation of lag k where k = 1, ..., lagmax.

Input Keywords

Double — If present and nonzero, double precision is used.

Xmean_In — The estimate of the mean of the time series x.

Se_Option — Method of computation for standard errors of the autocorrela-
tions. Keywords Se_Option and Seac must be used together.

Output Keywords

Acv — Named variable into which an array of length lagmax + 1 containing the
variance and autocovariances of the time series x is stored. The 0-th element of
this array is the variance of the time series x. The k-th element contains the au-

Se_Option Action

1 Compute the standard errrors of autocorrela-
tion using Barlett’s formula.

2 Compute the standard errrors of autocorrela-
tion using Moran’s formula.

392 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

tocovariance of lag k where k = 1, ..., lagmax.

Seac — Named variable into which an array of length lagmax containing the
standard errors of the autocorrelations of the time series x is stored. Keywords
Seac and Se_Option must be used together.

Xmean_Out — Named vaariable into which the estimate of the mean of the
time series x is stored.

Discussion

Function AUTOCORRELATION estimates the autocorrelation function of a
stationary time series given a sample of n = N_ELEMENTS(x) observations
{Xt} for t = 1, 2, …, n.

Let

be the estimate of the mean µ of the time series {Xt} where

The autocovariance function σ(k) is estimated by

where K = lagmax. Note that

is an estimate of the sample variance. The autocorrelation function ρ(k) is esti-

$µ = x mean_

$

,
µ

µ µ

µ= ∑

�
��
� =

known

unknown
1

1n
Xt

t

n

$ () ($)($), , , ,σ µ µk
n

X X k Kt t k
t

n k
= − − =∑ +

=

−1
0 1

1
K

$σ 0� �

AUTOCORRELATION Function 393

mated by

Note that

by definition.

The standard errors of the sample autocorrelations may be optionally computed
according to the keyword Se_Option for the output keyword Seac. One method
(Bartlett 1946) is based on a general asymptotic expression for the variance of
the sample autocorrelation coefficient of a stationary time series with indepen-
dent, identically distributed normal errors. The theoretical formula is

where

assumes µ is unknown. For computational purposes, the autocorrelations r(k)
are replaced by their estimates

for |k| ≤ K, and the limits of summation are bounded because of the assumption
that r(k) = 0 for all k such that |k| > K.

A second method (Moran 1947) utilizes an exact formula for the variance of the
sample autocorrelation coefficient of a random process with independent, identi-

$ ()
$ ()

, , ,
σ
σ

k
k= =

0
0 1

394 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

cally distributed normal errors. The theoretical formula is

where µ is assumed to be equal to zero. Note that this formula does not depend
on the autocorrelation function.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set
for this example consists of the number of sunspots observed from 1770
through 1869. Function AUTOCORRELATION computes the estimated autoco-
variances, estimated autocorrelations, and estimated standard errors of the auto-
correlations.

PRO print_results, xm, acv, result, seac

PRINT, "Mean =", xm

PRINT, "Variance =", acv(0)

PRINT, " Lag ACV AC SEAC"

PRINT, " 0", acv(0), result(0)

FOR j = 1, 20 DO $

 PRINT, j, acv(j), result(j), seac(j - 1)

END

lagmax = 20

data = STATDATA(2)

x = data(21:120,1)

result = AUTOCORRELATION(x, lagmax, Acv = acv, Se_Option = 1, $

 Seac = seac, Xmean_Out = xm)

print_results, xm, acv, result, seac

Mean = 46.9760

Variance = 1382.91

 Lag ACV AC SEAC

 0 1382.91 1.00000

 1 1115.03 0.806293 0.0347834

var k
n k

n n
$ρ� �� � � �= −

+ 2

PARTIAL_AC Function 395

 2 592.004 0.428087 0.0962420

 3 95.2974 0.0689109 0.156783

 4 -235.952 -0.170620 0.205767

 5 -370.011 -0.267560 0.230956

 6 -294.255 -0.212780 0.228995

 7 -60.4423 -0.0437067 0.208622

 8 227.633 0.164604 0.178476

 9 458.381 0.331462 0.145727

 10 567.841 0.410613 0.134406

 11 546.122 0.394908 0.150676

 12 398.937 0.288477 0.174348

 13 197.757 0.143001 0.190619

 14 26.8911 0.0194453 0.195490

 15 -77.2807 -0.0558828 0.195893

 16 -143.733 -0.103935 0.196285

 17 -202.048 -0.146104 0.196021

 18 -245.372 -0.177432 0.198716

 19 -230.816 -0.166906 0.205359

 20 -142.879 -0.103318 0.209387

PARTIAL_AC Function
Computes the sample partial autocorrelation function of a stationary time series.

Usage

result = PARTIAL_AC(cf)

Input Parameters

cf — One-dimensional array containing the autocorrelations of the time series x.

Returned Value

result — One-dimensional array containing the partial autocorrelations of the
time series x.

Input Keywords

Double — If present and nonzero, double precision is used.

396 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

Discussion

Function PARTIAL_AC estimates the partial autocorrelations of a stationary
time series given the K = (N_ELEMENTS(cf) – 1) sample autocorrelations

for k = 0, 1, …, K. Consider the AR(k) process defined by

where φkj denotes the j-th coefficient in the process. The set of estimates

for k = 1, …, K is the sample partial autocorrelation function. The autoregres-
sive parameters

for j = 1, …, k are approximated by Yule-Walker estimates for successive
AR(k) models where k = 1, …, K. Based on the sample Yule-Walker equations

a recursive relationship for k = 1, …, K was developed by Durbin (1960). The

$ρ k� �

X X X X Ak t k t kk t kt t= + + + +− − −φ φ φ1 1 2 2 L

$φkk� �

$φkj� �

$() $
$() $

$() $
$(), , , ,ρ φ ρ φ ρ φ ρj j j j k j kk k kk= − + − + + − =1 21 2 1 2L K

PARTIAL_AC Function 397

equations are given by

and

This procedure is sensitive to rounding error and should not be used if the pa-
rameters are near the nonstationarity boundary. A possible alternative would be
to estimate {φkk} for successive AR(k) models using least or maximum likeli-
hood. Based on the hypothesis that the true process is AR(p), Box and Jenkins
(1976, page 65) note

See Box and Jenkins (1976, pages 82–84) for more information concerning the
partial autocorrelation function.

Example

Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set
for this example consists of the number of sunspots observed from 1770
through 1869. Routine PARTIAL_AC is used to compute the estimated partial
autocorrelations.

data = STATDATA(2)

x = data(21:120,1)

result = AUTOCORRELATION(x, 20)

partial = PARTIAL_AC(result)

$

$()
$() $

$()

$
$()

, ,
,

,

φ

ρ
ρ φ ρ

φ ρ
kk j

k
k j

j
k

k

k

k k

j
k K

=

=
− ∑ −

− ∑
=

�
�	

	
=
−

−

=
−

−

1 1

1
2

1
1

1

1
1

1

j

j

K

$

$ $ $, , ,
$

, ,φ
φ φ φ
φkj

k kk k k j

kk

j k

j k
=

− = −
=

��	
	
− − −1 1 1 2 1j K

var{
n

k pkk
$ } ~φ − ≥ +1

1

398 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

PRINT, "LAG PACF"

FOR i = 0, 19 DO $

 PM, i + 1, partial(i), Format = "(I2, F11.3)"

LAG PACF

 1 0.806

 2 -0.635

 3 0.078

 4 -0.059

 5 -0.001

 6 0.172

 7 0.109

 8 0.110

 9 0.079

10 0.079

11 0.069

12 -0.038

13 0.081

14 0.033

15 -0.035

16 -0.131

17 -0.155

18 -0.119

19 -0.016

20 -0.004

LACK_OF_FIT Function
Performs lack-of-fit test for a univariate time series or transfer function given
the appropriate correlation function.

Usage

result = LACK_OF_FIT(nobs, cf, npfree)

LACK_OF_FIT Function 399

Input Parameters

nobs — Number of observations of the stationary time series.

cf — One-dimensional array containing the correlation function.

npfree — Number of free parameters in the formulation of the time series mod-
el. npfree must be greater than or equal to zero and less than lagmax where
lagmax = (N_ELEMENTS(cf) – 1). Woodfield (1990) recommends
npfree = p + q.

Returned Value

result — One-dimensional array of length 2 with the test statistic, Q, and its
p-value, p. Under the null hypothesis, Q has an approximate chi-squared distri-
bution with lagmax - Lagmin + 1 – npfree degrees of freedom.

Input Keywords

Double — If present and nonzero, double precision is used.

Lagmin — Minimum lag of the correlation function. Lagmin corresponds to
the lower bound of summation in the lack of fit test statistic.

Default: Lagmin = 1.

Discussion

Routine LACK_OF_FIT may be used to diagnose lack of fit in both ARMA
and transfer function models. Typical arguments for these situations are

Function LACK_OF_FIT performs a portmanteau lack of fit test for a time se-
ries or transfer function containing n observations given the appropriate sample

Model LAGMIN LAGMAX NPFREE

ARMA (p, q) 1 p + q

Transfer function 0 r + s

NOBS

NOBS

400 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

correlation function

for k = L, L + 1, …, K where L = Lagmin and K = lagmax.

The basic form of the test statistic Q is

with L = 1 if

is an autocorrelation function. Given that the model is adequate, Q has a chi-
squared distribution with K − L + 1 − m degrees of freedom where m = npfree
is the number of parameters estimated in the model. If the mean of the time se-
ries is estimated, Woodfield (1990) recommends not including this in the count
of the parameters estimated in the model. Thus, for an ARMA(p, q) model set
npfree = p + q regardless of whether the mean is estimated or not. The original
derivation for time series models is due to Box and Pierce (1970) with the
above modified version discussed by Ljung and Box (1978). The extension of
the test to transfer function models is discussed by Box and Jenkins (1976, pag-
es 394–395).

Example

Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set
for this example consists of the number of sunspots observed from 1770
through 1869. An ARMA(2,1) with nonzero mean is fitted using routine ARMA
(page 366). The autocorrelations of the residuals are estimated using routine
AUTOCORRELATION (page 391). A portmanteau lack of fit test is computed
using 10 lags with LACK_OF_FIT.

The warning message from ARMA in the output can be ignored. (See the ex-
ample for routine ARMA for a full explanation of the warning message.)

$()ρ k

Q n n n k k
k L

K
= + −∑ −

=
() () $()2 1ρ

$ρ k� �

GARCH Function 401

p = 2

q = 1

tc = 0.125

lagmax = 10

npfree = 4

; Get sunspot data for 1770 through 1869, store it in x()

data = STATDATA(2)

x = data(21:120,1)

; Get residuals for ARMA(2, 1) for autocorrelation/lack of fit

params = ARMA(x, p, q, /Lsq, Tol_Convergence = tc, Residual = r)

% ARMA: Warning: STAT_LEAST_SQUARES_FAILED

Least squares estimation of the parameters has failed to con-
verge. Increase "LGTH_BACKCAST" and/or "TOL_BACKCAST" and/or
"TOL_CONVERGENCE". The estimates of the parameters at the last
iteration may be used as new starting values.

; Get autocorrelations from residuals for lack of fit test

; NOTE: number of observations is equal to number of residuals

corrs = AUTOCORRELATION(r, lagmax)

; Get lack of fit test statistic and p-value

; NOTE: number of observations is equal to original number of data

result = LACK_OF_FIT(N_ELEMENTS(x), corrs, npfree)

; Print parameter estimates, test statistic, and p_value

; NOTE: Test Statistic Q follows a Chi-squated dist.

PRINT, "Lack of Fit Statistic (Q) =", result(0), $
Format = "(A28, F8.3)"

Lack of Fit Statistic (Q) = 14.572

PRINT, "P-value (PVALUE) =", result(1), Format = "(A28, F8.4)"

 P-value (PVALUE) = 0.9761

GARCH Function
Compute estimates of the parameters of a GARCH(p,q) model.

Usage

result = GARCH(p, q, y, xguess)

402 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

Input Parameters

p — Number of autoregressive (AR) parameters

q — Number of moving average (MA) parameters

y — One-dimensional array containing the observed time series data.

xguess — One-dimensional array of length p + q + 1 containing the initial val-
ues for the parameter array x.

Returned Value

result — One-dimensional array of length p + q + 1 containing the estimated
values of sigma squared, the AR parameters, and the MA parameters.

Input Keywords

Double — If present and nonzero, double precision is used.

Max_Sigma — Value of the upperbound on the first element (sigma) of the ar-
ray of returned estimated coefficients.

Default: Max_Sigma = 10.

Output Keywords

Log_Likelihood — Named variable into which the value of Log-likelihood
function evaluated at the estimated parameter array x is stored.

Aic — Named variable into which the value of Akaike Information Criterion
evaluated at the estimated parameter array x is stored.

Var — Named variable into which an array of size (p + q + 1) by (p + q + 1)
containing the variance-covariance matrix is stored.

Discussion

The Generalized Autoregressive Conditional Heteroskedastic (GARCH) model
is defined as

y z

y

t t t

t i t i
i

p

i t i
i

q

=

= + +∑ ∑−
=

−
=

σ

σ σ β σ α2 2 2

1 1
,

GARCH Function 403

where zt’s are independent and identically distributed standard normal random
variables,

The above model is denoted as GARCH(p,q). The p is the autoregressive lag
and the q is the moving average lag. When βi = 0, i = 1,2,…,p, the above mod-
el reduces to ARCH(q) which was proposed by Engle (1982). The nonnegativity
conditions on the parameters implied a nonnegative variance and the condition
on the sum of the βi’s and α i’s is required for wide sense stationarity.

In the empirical analysis of observed data, GARCH(1,1) or GARCH(1,2) mod-
els have often found to appropriately account for conditional heteroskedasticity
(Palm 1996). This finding is similar to linear time series analysis based on
ARMA models.

It is important to notice that for the above models positive and negative past
values have a symmetric impact on the conditional variance. In practice, many
series may have strong asymmetric influence on the conditional variance. To
take into account this phenomena, Nelson (1991) put forward Exponential
GARCH (EGARCH). Lai (1998) proposed and studied some properties of a
general class of models that extended linear relationship of the conditional vari-
ance in ARCH and GARCH into nonlinear fashion.

The maximal likelihood method is used in estimating the parameters in
GARCH(p,q). The log-likelihood of the model for the observed series {Yt} with
length m is

In the model, if q = 0, the model GARCH is singular such that the estimated
Hessian matrix H is singular.

The initial values of the parameter array x entered in array xguess must satisfy
certain constraints. The first element of xguess refers to sigma and must be
greater than zero and less than Max_Sigma. The remaining p + q initial values

σ β α

β α

> ≥ ≥

∑ + ∑ <
= =

0 0 0

1
1 1

, ,

.

i i

i

p

i
i

q

 and

i

log L
m

log y

 y

t t t
t

m

t

m

t i t i
i

p

t i
i

q

() () / log ,

.

= − − ∑∑

= + ∑ + ∑

==

−
=

−
=

2
2

1

2

1

2
2 2 2

11

2 2 2

1

2

1

π σ σ

σ σ β σ αwhere i

404 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

must each be greater than or equal to zero but less than one.

To guarantee stationarity in model fitting,

is checked internally. The initial values should be selected from the values be-
tween zero and one. The Aic is computed by

 2 * log (L) + 2 * (p+q+1),

where log(L) is the value of the log-likelihood function at the estimated parame-
ters.

In fitting the optimal model, the subroutine MINCONGEN as well as its associ-
ated subroutines are modified to find the maximal likelihood estimates of the
parameters in the model. Statistical inferences can be performed outside the rou-
tine GARCH based on the output of the log-likelihood function
(Log_Liklihood), the Akaike Information Criterion (Aic), and the variance-cova-
riance matrix (Var).

Example

The data for this example are generated to follow a GARCH(p,q) process by us-
ing a random number generation function SGARCH. The data set is analyzed
and estimates of sigma, the AR parameters, and the MA parameters are re-
turned. The values of the Log-likelihood function and the Akaike Information
Criterion are returned from the output keywords Log_Likelihood and Aic re-
spectively.

FUNCTION SGARCH, p, q, m, x

 z = FLTARR(m + 1000)

 y0 = FLTARR(m + 1000)

 sigma = FLTARR(m + 1000)

 z = RANDOM(m + 1000, /Normal)

 l = ((p > q) > 1)

 y0(0:l - 1) = z(0:l - 1)*x(0)

; Compute the Initial Value Of Sigma

 s3 = 0.0

 IF ((p > q) GE 1) THEN s3 = TOTAL(x(1:p + q))

x i
p q

() ,
i=

+
∑ <

1
1

GARCH Function 405

 sigma(0:l - 1) = x(0)/(1.0 - s3)

 FOR i = l, (m + 1000 - 1) DO BEGIN

 s1 = 0.0

 s2 = 0.0

 IF (q GE 1) THEN BEGIN

 FOR j = 0, q - 1 DO s1 = s1 + x(j + 1) * $

 (y0(i - j - 1)^2)

 END

 IF (p GE 1) THEN BEGIN

 FOR j = 0, p - 1 DO s2 = s2 + x(q + 1 + j) $

 * sigma(i - j - 1)

 END

 sigma(i) = x(0) + s1 + s2

 y0(i) = z(i)*SQRT(sigma(i))

 END

 ; Discard the first 1000 Simulated Observations

 RETURN, y0(1000:*)

; End of function

END

RANDOMOPT, Set = 182198625

p = 2

q = 1

m = 1000

x = [1.3, 0.2, 0.3, 0.4]

xguess = [1.0, 0.1, 0.2, 0.3]

y = SGARCH(p, q, m, x)

result = GARCH(p, q, y, xguess, Log_Likelihood = a, Aic = aic)

PRINT, "Sigma estimate is", result(0)

Sigma estimate is 1.27742

PRINT, "AR(1) estimate is", result(1)

AR(1) estimate is 0.230132

PRINT, "AR(2) estimate is", result(2)

AR(2) estimate is 0.375924

406 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

PRINT, "MA(1) estimate is", result(3)

MA(1) estimate is 0.312843

PRINT, "Log-likelihood function value is", a

Log-likelihood function value is -2707.53

PRINT, "Akaike Information Criterion value is", aic

Akaike Information Criterion value is 5423.06

KALMAN Procedure
Performs Kalman filtering and evaluates the likelihood function for the state-
space model.

Usage

KALMAN, b, covb, n, ss, alndet

Input/Output Parameters

b One dimensional array of containing the estimated state vector. The input
is the estimated state vector at time k given the observations through time
k − 1. The output is the estimated state vector at time k + 1 given the observa-
tions through time k. On the first call to KALMAN, the input b must be the
prior mean of the state vector at time.

covb Two dimensional array of size N_ELEMENTS(b) by
N_ELEMENTS(b) such that covb* σ2 is the mean squared error matrix for b.
Before the first call to KALMAN, covb* σ2 must equal the variance-covariance
matrix of the state vector.

n Named variable containing the rank of the variance-covariance matrix for
all the observations. n must be initialized to zero before the first call to
KALMAN. In the usual case when the variance-covariance matrix is nonsingu-
lar, n equals the sum of the N_ELEMENTS(Y) from the invocations to
KALMAN. See the keyword section below for the definition of Y.

KALMAN Procedure 407

ss Named variable containing the generalized sum of squares.
ss must be initialized to zero before the first call to KALMAN. The estimate of
σ2 is given by

alnet Named variable containing the natural log of the product of the nonzero
eigenvalues of P where P * σ2 is the variance-covariance matrix of the observa-
tions. Although alndet is computed, KALMAN avoids the explicit computation
of P. alndet must be initialized to zero before the first call to KALMAN. In the
usual case when P is nonsingular, alndet is the natural log of the determinant of
P.

Input Keywords

Y One dimensional array containing the observations. Keywords Y, Z and R
indicate an update step and must be used together

R Two dimensional array if size N_ELEMENTS(Y) by N_ELEMENTS(Y)
containing the matrix such that R * σ2 is the variance-covariance matrix of
errors in the observation equation. Keywords Y, Z and R indicate an update step
and must be used together.

T_matrix Two dimensional array if size N_ELEMENTS(b) by
N_ELEMENTS(b) containing the transition matrix in the state equation.

Default: T_matrix = identity matrix

Q_matrix Two dimensional array if size N_ELEMENTS(b) by
N_ELEMENTS(b) matrix such that Q_matrix * σ2 is the variance-covariance
matrix of the error vector in the state equation.

Default: There is no error term in the state equation

Tolerance Tolerance used in determining linear dependence.

Default: Tolerance = 100*eps where eps is machine precision.

Output Keywords

V One dimensional array of length N_ELEMENTS(Y) containing the one-
step-ahead prediction error.

.
ss

n

408 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

Covv Two dimensional array if size N_ELEMENTS(Y) by
N_ELEMENTS(Y) containing a matrix such that Covv * σ2 is the variance-
covariance matrix of v.

Discussion

Routine KALMAN is based on a recursive algorithm given by Kalman (1960),
which has come to be known as the Kalman filter. The underlying model is
known as the state-space model. The model is specified stage by stage where
the stages generally correspond to time points at which the observations become
available. The routine KALMAN avoids many of the computations and storage
requirements that would be necessary if one were to process all the data at the
end of each stage in order to estimate the state vector. This is accomplished by
using previous computations and retaining in storage only those items essential
for processing of future observations.

The notation used here follows that of Sallas and Harville (1981). Let yk (input
in keyword Y) be the nk × 1 vector of observations that become available at
time k. The subscript k is used here rather than t, which is more customary in
time series, to emphasize that the model is expressed in stages k = 1, 2, … and
that these stages need not correspond to equally spaced time points. In fact, they
need not correspond to time points of any kind. The observation equation for
the state-space model is

yk = Zkbk + ek k = 1, 2, …

Here, Zk is an nk × q known matrix and bk is the q × 1 state vector. The state
vector bk is allowed to change with time in accordance with the state equation

bk+1 = Tk+1 bk + wk+1 k = 1, 2, …

starting with b1 = µ1 + w1.

The change in the state vector from time k to k + 1 is explained in part by the
transition matrix Tk+1 (the identity matrix by default, or optionally input using
keyword T_MATRIX), which is assumed known. It is assumed that the q-dimen-
sional wks (k = 1, 2, ... K) are independently distributed multivariate normal
with mean vector 0 and variance-covariance matrix σ2Qk, that the nk-dimen-
sional eks (k = 1, 2, ... K) are independently distributed multivariate normal
with mean vector 0 and variance-covariance matrix σ2 Rk, and that the wks and
eks are independent of each other. Here, µ1is the mean of b1 and is assumed
known, σ2 is an unknown positive scalar. Qk+1 (input in Q) and Rk (input in
keyword R) are assumed known.

KALMAN Procedure 409

Denote the estimator of the realization of the state vector bk given the observa-
tions y1, y2, …, yj by

By definition, the mean squared error matrix for

is

At the time of the k-th invocation, we have

and

Ck|k-1, which were computed from the (k−1)-st invocation, input in b and covb,
respectively. During the k-th invocation, routine KALMAN computes the fil-
tered estimate

along with Ck|k. These quantities are given by the update equations:

where

$

|βk j

$

|βk j

σ β β2C E b bk j k j k k j k
T= − −($)($)

$βk k −1

$

|βk k

$ $β βk k k k k k k
T

k k

k k k k k k k
T

k k k k

C Z H v

C C C Z H Z C

= +

= −

− −
−

− −
−

−

1 1
1

1 1
1

1

410 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

and where

Here, vk (stored in v) is the one-step-ahead prediction error, and σ2Hk is the
variance-covariance matrix for vk. Hk is stored in covv. The “start-up values”
needed on the first invocation of KALMAN are

and C1|0 = Q1 input via b and covb, respectively. Computations for the k-th
invocation are completed by KALMAN computing the one-step-ahead estimate

along with Ck+1|k given by the prediction equations:

If both the filtered estimates and one-step-ahead estimates are needed by the
user at each time point, KALMAN can be invoked twice for each time point—
first without T_matrix and Q_matrix to produce

and Ck|k, and second without keywords Y, Z, and R to produce

and Ck+1|k (Without T_matrix and Q_matrix, the prediction equations are
skipped. Without keywords Y, Z, and R, the update equations are skipped.).

v y Zk k k k k= − −
$β 1

H R Z C Zk k k k k k
T= + −1

$β µ1 0 1=

$βk k+1

$ $β βk k k k k

k k k k k k
T

k

T

C T C T Q

+ +

+ + + +

=

= +

1 1

1 1 1 1

$βk k

$βk k+1

KALMAN Procedure 411

Often, one desires the estimate of the state vector more than one-step-ahead,
i.e., an estimate of

is needed where k > j + 1. At time j, KALMAN is invoked with keywords Y, Z,
and R to compute

Subsequent invocations of KALMAN without keywords Y, Z, and R can
compute

Computations for

and Ck|j assume the variance-covariance matrices of the errors in the observa-
tion equation and state equation are known up to an unknown positive scalar
multiplier, σ2. The maximum likelihood estimate of σ2 based on the observa-
tions y1, y2, …, ym, is given by

where

N and SS are the input/output arguments n and ss.

If σ2 is known, the Rks and Qks can be input as the variance-covariance matri-
ces exactly. The earlier discussion is then simplified by letting σ2 = 1.

In practice, the matrices Tk, Qk, and Rk are generally not completely known.
They may be known functions of an unknown parameter vector θ. In this case,
KALMAN can be used in conjunction with an optimization program (see rou-

$βk j

$β j j+1

$, $, , $β β βj j j j k j+ +2 3 K

$βk j

$ /σ2 = SS N

1

1 1

m m
T

k k k k
k k

N n and SS v H v−

= =
= =∑ ∑

412 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

tine FMINV, PV-WAVE: IMSL Mathematics Reference, Chapter 8,
“Optimization”) to obtain a maximum likelihood estimate of θ. The natural log-
arithm of the likelihood function for y1, y2, …, ym differs by no more than an
additive constant from

(Harvey 1981, page 14, equation 2.21).

Here,

(stored in alndet) is the natural logarithm of the determinant of V where σ2V is
the variance-covariance matrix of the observations.

Minimization of −2L(θ, σ2; y1, y2, …, ym) over all θ and σ2 produces maximum
likelihood estimates. Equivalently, minimization of −2Lc(θ; y1, y2, …, ym) where

produces maximum likelihood estimates

The minimization of −2Lc(θ; y1, y2, …, ym) instead of −2L(θ, σ2; y1, y2, …, ym),
reduces the dimension of the minimization problem by one. The two optimiza-
tion problems are equivalent since

L y y y N

H v H v

m

k k
T

k k

k

m

k

m

(, ; , , ,)

[()]

q s s

s

2
1 2

2 1

11

1

2

1

2

1

2

K = -

- -
- -

==

ÊÊ

ln

ln det

2

=1

[()]
m

k
k

ln det H∑

L y y y N
SS

N
Hc m k

k

m

(; , , ,) [()]q 1 2
1

1

2

1

2
K = -

�
�

�
�� -

=

Êln ln det

$
$ /θ σ and 2 = SS N

$ () () /s q q
2

= SS N

KALMAN Procedure 413

minimizes −2L(θ, σ2; y1, y2, …, ym) for all θ, consequently,

can be substituted for σ2 in L(θ, σ2; y1, y2, …, ym) to give a function that dif-
fers by no more than an additive constant from Lc(θ; y1, y2, …, ym).

The earlier discussion assumed Hk to be nonsingular. If Hk is singular, a modifi-
cation for singular distributions described by Rao (1973, pages 527–528) is
used. The necessary changes in the preceding discussion are as follows:

1. Replace

by a generalized inverse.

2. Replace det(Hk) by the product of the nonzero eigenvalues of Hk.

3. Replace N by

Maximum likelihood estimation of parameters in the Kalman filter is discussed
by Sallas and Harville (1988) and Harvey (1981, pages 111–113).

Example 1

Routine KALMAN is used to compute the filtered estimates and one-step-ahead
estimates for a scalar problem discussed by Harvey (1981, pages
116–117). The observation equation and state equation are given by

where the eks are identically and independently distributed normal with mean 0
and variance σ2, the wks are identically and independently distributed normal
with mean 0 and variance 4σ2, and b1 is distributed normal with mean 4 and
variance 16σ2. Two invocations of KALMAN are needed for each time point in

$ ()s q
2

Hk
−1

()
1

m

k
k

rank H
=

∑

y b e

b b w k
k k k

k k k

= +
= + =+ +1 1 1 2 3 4, , ,

414 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

order to compute the filtered estimate and the one-step-ahead estimate. The first
invocation does not use the keywords T_matrix and Q_matrix so that the predic-
tion equations are skipped in the computations. The update equations are
skipped in the computations in the second invocation.

This example also computes the one-step-ahead prediction errors. Harvey (1981,
page 117) contains a misprint for the value v4 that he gives as 1.197. The cor-
rect value of v4 = 1.003 is computed by KALMAN.

Note that this example is in the form of a WAVE procedure, with the output fol-
lowing the procedure.

PRO EX_KALMAN

z = 1

r = 1

q = 4

t = 1

b = 4

covb = 16

ydata = [4.4, 4, 3.5, 4.6]

n = 0

ss = 0

alndet = 0

format = "(2I4, 2F8.3, I4, 4F8.3)"

PRINT, " k j b covb n ss alndet v
covv"

FOR i = 0, 3 DO BEGIN

 y = ydata(i)

 ; Update

 kalman, b, covb, n, ss, alndet, $

 Y = y, Z = Z, R = r, $

 v = v, covv = covv

 PRINT, i, i, b, covb, n, ss, alndet, v, covv, format =
format

KALMAN Procedure 415

 ; Predict

 kalman, b, covb, n, ss, alndet, $

 t_matrix = t, q = q

 PRINT, i+1, i, b, covb, n, ss, alndet, v, covv, format =
format

END

END

Output

k j b covb n ss alndet v covv

0 0 4.376 0.941 1 0.009 2.833 0.400 17.000

1 0 4.376 4.941 1 0.009 2.833 0.400 17.000

1 1 4.063 0.832 2 0.033 4.615 -0.376 5.941

2 1 4.063 4.832 2 0.033 4.615 -0.376 5.941

2 2 3.597 0.829 3 0.088 6.378 -0.563 5.832

3 2 3.597 4.829 3 0.088 6.378 -0.563 5.832

3 3 4.428 0.828 4 0.260 8.141 1.003 5.829

4 3 4.428 4.828 4 0.260 8.141 1.003 5.829

416 Chapter 8: Time Series and Forecasting PV-WAVE:IMSL Statistics Reference

417

CHAPTER

9

Multivariate Analysis

Contents of Chapter
Performs a K-means (centroid)
cluster analysis K_MEANS Function

Computes principal components
..PRINC_COMP Function

Extracts factor-loading
estimates FACTOR_ANALYSIS Function

Perform discriminant function
analysis DISCR_ANALYSIS Procedure

Introduction

Cluster Analysis

Function K_MEANS performs a K-means cluster analysis. Basic K-means clus-
tering attempts to find a clustering that minimizes the within-cluster sums-of-
squares. In this method of clustering the data, matrix X is grouped so that each
observation (row in X) is assigned to one of a fixed number, K, of clusters. The
sum of the squared difference of each observation about its assigned cluster’s
mean is used as the criterion for assignment. In the basic algorithm, observa-
tions are transferred from one cluster or another when doing so decreases the
within-cluster sums-of-squared differences. When no transfer occurs in a pass

418 Chapter 9: Multivariate Analysis PV-WAVE:IMSL Statistics Reference

through the entire data set, the algorithm stops. Function K_MEANS is one
implementation of the basic algorithm.

The usual course of events in K-means cluster analysis is to use K_MEANS to
obtain the optimal clustering. The clustering is then evaluated by functions
described in Chapter 1, Basic Statistics, and other chapters in this manual.
Often, K-means clustering with more than one value of K is performed, and the
value of K that best fits the data is used.

Clustering can be performed either on observations or variables. The discussion
of function K_MEANS assumes the clustering is to be performed on the obser-
vations, which correspond to the rows of the input data matrix. If variables,
rather than observations, are to be clustered, the data matrix should first be
transposed. In the documentation for K_MEANS, the words “observation” and
“variable” can be interchanged.

Principal Components

The idea in principal components is to find a small number of linear combina-
tions of the original variables that maximize the variance accounted for in the
original data. This amounts to an eigensystem analysis of the covariance (or
correlation) matrix. In addition to the eigensystem analysis, PRINC_COMP
computes standard errors for the eigenvalues. Correlations of the original vari-
ables with the principal component scores also are computed.

Factor Analysis

Factor analysis and principal component analysis, while quite different in
assumptions, often serve the same ends. Unlike principal components in which
linear combinations yielding the highest possible variances are obtained, factor
analysis generally obtains linear combinations of the observed variables accord-
ing to a model relating the observed variable to hypothesized underlying factors,
plus a random error term called the unique error or uniqueness. In factor analy-
sis, the unique errors associated with each variable are usually assumed to be
independent of the factors. Additionally, in the common factor model, the
unique errors are assumed to be mutually independent. The factor analysis
model is expressed in the following equation:

x – µ = Λf + e

where x is the p vector of observed values, µ is the p vector of variable means,
Λ is the p x k matrix of factor loadings, f is the k vector of hypothesized under-
lying random factors, e is the p vector of hypothesized unique random errors, p

K_MEANS Function 419

is the number of variables in the observed variables, and k is the number of
factors.

Because much of the computation in factor analysis was originally done by
hand or was expensive on early computers, quick (but “dirty”) algorithms that
made the calculations possible were developed. One result is the many factor
extraction methods available today. Generally speaking, in the exploratory or
model-building phase of a factor analysis, a method of factor extraction that is
not computationally intensive (such as principal components, principal factor, or
image analysis) is used. If desired, a computationally intensive method is then
used to obtain the final factors.

K_MEANS Function
Performs a K-means (centroid) cluster analysis.

Usage

result = K_MEANS(x, seeds)

Input Parameters

x — Two-dimensional array containing the observations to be clustered. The
data value for the i-th observation of the j-th variable should be in x(i, j) .

seeds — Two-dimensional array containing the cluster seeds, i.e., estimates for
the cluster centers. The seed value for the j-th variable of the i-th seed should
be in seeds (i, j).

Returned Value

result — The cluster membership for each observation is returned.

Input Keywords

Double — If present and nonzero, double precision is used.

Weights — One-dimensional array containing the weight of each observation of
matrix x.

Default: Weights(*) = 1

420 Chapter 9: Multivariate Analysis PV-WAVE:IMSL Statistics Reference

Frequencies — One-dimensional array containing the frequency of each obser-
vation of matrix x.

Default: Frequencies(*) = 1

Itmax — Maximum number of iterations.

Default: Itmax = 30

Var_Columns — One-dimensional array containing the columns of x to be used
in computing the metric. Columns are numbered 0, 1, 2, ...,
N_ELEMENTS(x(0, *)).

Default: Vars_Columns(*) = 0, 1, 2, ..., N_ELEMENTS(x(0, *)) – 1

Output Keywords

Means_Cluster — Named variable into which a two-dimensional array contain-
ing the cluster means is stored.

Ssq_Cluster — Named variable into which a one-dimensional array containing
the within sum-of-squares for each cluster is stored.

Counts_Cluster — Named variable into which an array containing the number
of observations in each cluster is stored.

Discussion

Function K_MEANS is an implementation of Algorithm AS 136 by
Hartigan and Wong (1979). This function computes K-means (centroid) Euclid-
ean metric clusters for an input matrix starting with initial estimates of the K-
cluster means. The K_MEANS function allows for missing values coded as
NaN (Not a Number) and for weights and frequencies.

Let p = N_ELEMENTS(x (0, *)) be the number of variables to be used in com-
puting the Euclidean distance between observations. The idea in K-means
cluster analysis is to find a clustering (or grouping) of the observations so as to
minimize the total within-cluster sums-of-squares. In this case, the total sums-
of-squares within each cluster is computed as the sum of the centered sum-of-
squares over all nonmissing values of each variable. That is,

φ fνim
wν im

δνim j, xνim j, xij–()2

m 1=

ni

∑
j 1=

p

∑
i 1=

K

∑=

K_MEANS Function 421

where νim denotes the row index of the m-th observation in the i-th cluster in
the matrix X; ni is the number of rows of X assigned to group i; f denotes the
frequency of the observation; w denotes its weight; δ is 0 if the j-th variable on
observation νim is missing, otherwise δ is 1; and

is the average of the nonmissing observations for variable j in group i. This
method sequentially processes each observation and reassigns it to another clus-
ter if doing so results in a decrease of the total within-cluster sums-of-squares.
See Hartigan and Wong (1979) or Hartigan (1975) for details.

Example

This example performs K-means cluster analysis on Fisher’s iris data, which is
obtained by function STATDATA. The initial cluster seed for each iris type is an
observation known to be in the iris type.

seeds = MAKE_ARRAY(3,4)

x = STATDATA(3)

seeds(0, *) = x(0, 1:4)

seeds(1, *) = x(50, 1:4)

seeds(2, *) = x(100, 1:4)

; Use Columns 1, 2, 3, and 4 of data matrix x, only.

cluster_group = K_MEANS(x(*, 1:4), seeds, $

Means_Cluster = means_cluster, $

Ssq_Cluster= ssq_cluster, $

Counts_Cluster = counts_cluster)

format = ’(a, 10i4)’

FOR i = 0, 140, 10 DO BEGIN &$

PRINT, "observation: ",i + INDGEN(10)+1, $

Format = format &$

PRINT, "cluster: ", cluster_group(i:i+9), $

Format = format &$

PRINT &$

END

; Print cluster membership in groups of 10.

xij

422 Chapter 9: Multivariate Analysis PV-WAVE:IMSL Statistics Reference

observation: 1 2 3 4 5 6 7 8 9 10

cluster : 1 1 1 1 1 1 1 1 1 1

observation: 11 12 13 14 15 16 17 18 19 20

cluster : 1 1 1 1 1 1 1 1 1 1

observation: 21 22 23 24 25 26 27 28 29 30

cluster : 1 1 1 1 1 1 1 1 1 1

observation: 31 32 33 34 35 36 37 38 39 40

cluster : 1 1 1 1 1 1 1 1 1 1

observation: 41 42 43 44 45 46 47 48 49 50

cluster : 1 1 1 1 1 1 1 1 1 1

observation: 51 52 53 54 55 56 57 58 59 60

cluster : 2 2 3 2 2 2 2 2 2 2

observation: 61 62 63 64 65 66 67 68 69 70

cluster : 2 2 2 2 2 2 2 2 2 2

observation: 71 72 73 74 75 76 77 78 79 80

cluster : 2 2 2 2 2 2 2 3 2 2

observation: 81 82 83 84 85 86 87 88 89 90

cluster : 2 2 2 2 2 2 2 2 2 2

observation: 91 92 93 94 95 96 97 98 99 100

cluster : 2 2 2 2 2 2 2 2 2 2

observation: 101 102 103 104 105 106 107 108 109 110

cluster : 3 2 3 3 3 3 2 3 3 3

observation: 111 112 113 114 115 116 117 118 119 120

cluster : 3 3 3 2 2 3 3 3 3 2

observation: 121 122 123 124 125 126 127 128 129 130

cluster : 3 2 3 2 3 3 2 2 3 3

observation: 131 132 133 134 135 136 137 138 139 140

cluster : 3 3 3 2 3 3 3 3 2 3

observation: 141 142 143 144 145 146 147 148 149 150

cluster : 3 3 2 3 3 3 2 3 3 2

PM, [[INDGEN(3) + 1],[means_cluster]], $

Title = "Cluster Means:", $

Format = ’(i3, 5x, 4f8.4)’

Cluster Means:

 1 5.0060 3.4280 1.4620 0.2460

2 5.9016 2.7484 4.3935 1.4339

3 6.8500 3.0737 5.7421 2.0711

PRINC_COMP Function 423

PM, [[INDGEN(3) + 1],[ssq_cluster]], $

Title = "Cluster Sums of Squares:", $

Format = ’(i3, 5x, f8.4)’

Cluster Sums of Squares:

 1 15.1510

2 39.8210

3 23.8795

PM, [[INDGEN(3) + 1],[counts_cluster]], $

Title = $

"Number of Observations per Cluster:"

Number of Observations per Cluster:
1 50
2 62
3 38

Warning Errors

STAT_NO_CONVERGENCE — Convergence did not occur.

PRINC_COMP Function
Computes principal components.

Usage

result = PRINC_COMP(covariances)

Input Parameters

covariances — Two-dimensional square matrix containing the covariance or
correlation matrix.

Returned Value

result — One-dimensional array containing the eigenvalues of covariances
ordered from largest to smallest.

Input Keywords

Double — If present and nonzero, double precision is used.

424 Chapter 9: Multivariate Analysis PV-WAVE:IMSL Statistics Reference

Cov_Matrix — If present and nonzero, treats the input matrix covariances as a
covariance matrix. Keywords Cov_Matrix and Corr_Matrix cannot be used
together. Default: Cov_Matrix = 1
Corr_Matrix — If present and nonzero, treats the input matrix covariances as a
correlation matrix.

Output Keywords

Cum_Percent — Named variable into which the one-dimensional array contain-
ing the cumulative percent of the total variances explained by each principal
component is stored.

Eigenvectors — Named variable into which the two-dimensional array contain-
ing the eigenvectors of covariances, stored columnwise, is stored. Each vector
is normalized to have Euclidean length equal to the value 1. Also, the sign of
each vector is set so that the largest component in magnitude (the first of the
largest if ties exist) is made positive.

Correlations — Named variable into which the one-dimensional array of length
containing the correlations of the principal components (the columns) with the
observed/standardized variables (the rows) is stored. If Cov_Matrix is present
and nonzero, the correlations are with the observed variables; otherwise, the
correlations are with the standardized variables (to a variance of 1.0). In the
principal component model for factor analysis, matrix Correlations is the matrix
of unrotated factor loadings.

Df — Named variable into which the number of degrees of freedom in
covariances is stored. Keywords Df and Stdev must be used together.

Stdev — Named variable into which the one-dimensional array containing the
estimated asymptotic standard errors of the eigenvalues is stored. Keywords Df
and Stdev must be used together.

Discussion

Function PRINC_COMP finds the principal components of a set of variables
from a sample covariance or correlation matrix. The characteristic roots, charac-
teristic vectors, standard errors for the characteristic roots, and the correlations
of the principal component scores with the original variables are computed.
Principal components obtained from correlation matrices are the same as princi-
pal components obtained from standardized variables (to unit variance).

PRINC_COMP Function 425

The principal component scores are the elements of the vector y = ΓTx, where Γ
is the matrix whose columns are the characteristic vectors (eigenvectors) of the
sample covariance (or correlation) matrix and x is the vector of observed (or
standardized) random variables. The variances of the principal component
scores are the characteristic roots (eigenvalues) of the covariance (correlation)
matrix.

Asymptotic variances for the characteristic roots were first obtained by Gir-
schick (1939) and are given more recently by Kendall et al. (1983, p. 331).
These variances are computed either for covariance matrices or for correlation
matrices.

The correlations of the principal components with the observed (or standard-
ized) variables are given in the matrix correlations. When the principal
components are obtained from a correlation matrix, Correlations is the same as
the matrix of unrotated factor loadings obtained for the principal components
model for factor analysis.

Example 1

In this example, principal components are computed for a nine-variable covari-
ance matrix. This example opens a file, cov.dat, and reads in the covariance
matrix using the RMF procedure. The file cov.dat contains the following data:

1.0 0.523 0.395 0.471 0.346 0.426 0.576 0.434 0.639

0.523 1.0 0.479 0.506 0.418 0.462 0.547 0.283 0.645

0.395 0.479 1.0 0.355 0.27 0.254 0.452 0.219 0.504

0.471 0.506 0.355 1.0 0.691 0.791 0.443 0.285 0.505

0.346 0.418 0.27 0.691 1.0 0.679 0.383 0.149 0.409

0.426 0.462 0.254 0.791 0.679 1.0 0.372 0.314 0.472

0.576 0.547 0.452 0.443 0.383 0.372 1.0 0.385 0.68

0.434 0.283 0.219 0.285 0.149 0.314 0.385 1.0 0.47

0.639 0.645 0.504 0.505 0.409 0.472 0.68 0.47 1.0

OPENR, unit, ’cov.dat’, /Get_Lun

RMF, unit, covariances, 9, 9

CLOSE, unit

values = PRINC_COMP(covariances)

PM, values, Title = "Eigenvalues:"

Eigenvalues:

4.67692
1.26397

 0.844450
 0.555027

426 Chapter 9: Multivariate Analysis PV-WAVE:IMSL Statistics Reference

 0.447076
 0.429125
 0.310241
 0.277006
 0.196197

Example 2

In this example, principal components are computed for a nine-variable correla-
tion matrix. This example uses the same data as the first example.

OPENR, unit, ’cov.dat’, /Get_Lun

RMF, unit, covariances, 9, 9

CLOSE, unit

values = PRINC_COMP(covariances, $

/Corr_Matrix, $

Eigenvectors = ev, $

Stdev = stdev, $

Df = 100, $

Cum_Percent = cp, $

Comp_Resp_Corr = a)

PM, [[values],[ev]], $
Title = "Eigenvalue Eigenvector:",$
Format = ’(f7.2, 2x, 9f7.2)’

Eigenvalue Eigenvector:

4.68 0.35 -0.24 0.14 -0.33 -0.11 0.80 0.17 -0.12 -0.05

1.26 0.35 -0.11 -0.28 -0.22 0.77 -0.20 0.14 -0.30 -0.01

0.84 0.28 -0.27 -0.56 0.69 -0.15 0.15 0.01 -0.04 -0.10

0.56 0.37 0.40 0.04 0.12 0.00 0.12 -0.40 -0.12 0.71

0.45 0.31 0.50 -0.07 -0.02 -0.28 -0.18 0.73 0.01 0.00

0.43 0.35 0.46 0.18 0.11 0.12 0.07 -0.37 0.09 -0.68

0.31 0.35 -0.27 -0.07 -0.35 -0.52 -0.44 -0.29 -0.34 -0.11

0.28 0.24 -0.32 0.74 0.43 0.09 -0.20 0.19 -0.16 0.05

0.20 0.38 -0.25 -0.01 -0.15 0.05 -0.15 -0.03 0.85 0.12

PM, a, Title = "Matrix A:", Format = ’(9f7.2)’

Matrix A:

0.75 -0.26 0.13 -0.25 -0.07 0.52 0.10 -0.07 -0.02

0.76 -0.12 -0.26 -0.16 0.51 -0.13 0.08 -0.16 -0.00

0.60 -0.30 -0.51 0.52 -0.10 0.10 0.01 -0.02 -0.04

PRINC_COMP Function 427

0.79 0.45 0.04 0.09 0.00 0.08 -0.22 -0.06 0.31

0.68 0.56 -0.07 -0.02 -0.19 -0.12 0.41 0.00 0.00

0.75 0.51 0.17 0.08 0.08 0.05 -0.21 0.05 -0.30

0.75 -0.31 -0.07 -0.26 -0.35 -0.29 -0.16 -0.18 -0.05

0.52 -0.36 0.68 0.32 0.06 -0.13 0.10 -0.09 0.02

0.83 -0.28 -0.01 -0.11 0.03 -0.10 -0.01 0.45 0.05

PM, [[values], [stdev], [cp]], $
Title = "Eigenvalue STD PCT", $
Format = ’(3(3x,F5.2))’

Eigenvalue STD PCT
4.68 0.65 0.52
1.26 0.18 0.66
0.84 0.10 0.75
0.56 0.09 0.82
0.45 0.09 0.87
0.43 0.09 0.91
0.31 0.09 0.95
0.28 0.10 0.98
0.20 0.11 1.00

Warning Errors

STAT_100_DF — Because the number of degrees of freedom in Covariances
and Df is less than or equal to zero, 100 degrees of freedom will be used.

STAT_COV_NOT_NONNEG_DEF — Keyword Eigenvectors(#) = #. One or
more eigenvalues much less than zero are computed. The matrix Covariances is
not nonnegative definite. In order to continue computations of Eigenvectors and
Correlations, these eigenvalues are treated as zero.

STAT_FAILED_TO_CONVERGE — Iteration for the eigenvalue failed to con-
verge in 100 iterations before deflating.

428 Chapter 9: Multivariate Analysis PV-WAVE:IMSL Statistics Reference

FACTOR_ANALYSIS Function
Extracts initial factor-loading estimates in factor analysis.

Usage

result = FACTOR_ANALYSIS(covariances, n_factors)

Input Parameters

covariances — Two-dimensional array containing the variance-covariance or
correlation matrix.

n_factors — Number of factors in the model.

Returned Value

result — A two-dimensional array containing the matrix of factor loadings.

Input Keywords

Double — If present and nonzero, double precision is used.

NOTE Keywords Max_Liklelihood, Princ_Comp, Princ_Factor, Unwgt_Lsq,
Gen_Lsq, Image, and Alpha cannot be used together.

Max_Likelihood — The number of degrees of freedom in covariances. Using
Max_Likelihood forces the maximum likelihood (common factor) model to be
used to obtain the estimates.

Princ_Comp — If i present and nonzero, the principal component (principal
component model) is used to obtain the estimates.

Princ_Factor — If present and nonzero, the principal factor (common factor
model) is used to obtain the estimates.

Unwgt_Lsq — If present and nonzero, the unweighted least-squares (common
factor model) method is used to obtain the estimates. This option is the default.

Gen_Lsq — If present and nonzero, the generalized least-squares (common fac-
tor model) method is used to obtain the estimates.

Image — If present and nonzero, the image-factor analysis (common factor
model) method is used to obtain the estimates.

FACTOR_ANALYSIS Function 429

Alpha — The number of degrees of freedom in covariances. Using Alpha
forces the alpha-factor analysis (common factor model) method to be used to
obtain the estimates.

Unique_Var_In — One-dimensional array of length N_ELEMENTS(covari-
ances(0, *)) containing the initial estimates of the unique variances.

Default: initial estimates are taken as the constant
1 – n_factors / 2 * N_ELEMENTS(covariances(0, *)) divided by the
diagonal elements of the inverse of covariances

Itmax — Maximum number of iterations in the iterative procedure.

Default: Itmax = 60

Max_Steps — Maximum number of step halvings allowed during any one
iteration.

Default: Max_Steps = 10

Eps — Convergence criterion used to terminate the iterations. For the
unweighted least squares, generalized least squares, or maximum likelihood
methods, convergence is assumed when the relative change in the criterion is
less than Eps. For alpha-factor analysis, convergence is assumed when the max-
imum change (relative to the variance) of a uniqueness is less than Eps.

Default: Eps = 0.0001

Switch_Eps — Convergence criterion used to switch to exact second deriva-
tives. When the largest relative change in the unique standard deviation vector
is less than Switch_Eps, exact second derivative vectors are used. The value of
Switch_Eps is not used with the principal component, principal factor, image-
factor analysis, or alpha-factor analysis methods.

Default: Switch_Eps = 0.1

Output Keywords

Unique_Var_Out — One-dimensional array of length N_ELEMENTS(covari-
ances(0, *)) containing the estimated unique variances.

Eigenvalues — Named variable into which a one-dimensional array of length
N_ELEMENTS(covariances(0, *)) containing the eigenvalues of the matrix
from which the factors were extracted is stored.

Chi_Sq_Test — Named variable into which a one-dimensional array of length
3, containing the chi-squared test statistics, is stored. The contents of the array

430 Chapter 9: Multivariate Analysis PV-WAVE:IMSL Statistics Reference

are, in order, the number of degrees of freedom in chi-squared, the chi-squared
test statistic for testing that n_factors common factors are adequate for the data,
and the probability of a greater chi-squared statistic.

Tucker_Coef — Named variable into which the Tucker reliability coefficient is
stored.

Iters — Named variable into which the number of iterations is stored.

F_Min — Named variable into which the value of the function minimum is
stored.

Last_Step — Named variable into which an array of length
N_ELEMENTS(covariances(0, *)) containing the updates of the unique vari-
ance estimates when convergence was reached (or the iterations terminated) is
stored.

Discussion

Function S computes unrotated factor loadings in exploratory factor-analysis
models. Models available in FACTOR_ANALYSIS are the principal compo-
nent model for factor analysis and the common factor model with additions to
the common factor model in alpha-factor analysis and image analysis. Methods
of estimation include principal components, principal factor, image analysis,
unweighted least squares, generalized least squares, and maximum likelihood.

In the factor-analysis model used for factor extraction, the basic model is given
as Σ = ΛΛT + Ψ, where Σ is the p x p population covariance matrix, Λ is the p x
k matrix of factor loadings relating the factors f to the observed variables x, and
Ψ is the p x p matrix of covariances of the unique errors e. Here, p =
N_ELEMENTS(covariances(0, *)) and k = n_factors. The relationship between
the factors, the unique errors, and the observed variables is given as x = Λf + e,
where in addition, the expected values of e, f, and x are assumed to be zero.
(The sample means can be subtracted from x if the expected value of x is not
zero.) It also is assumed that each factor has unit variance, that the factors are
independent of each other, and that the factors and the unique errors are mutu-
ally independent. In the common factor model, the elements of unique errors e
also are assumed to be independent of one another so that the matrix Ψ is diag-
onal. This is not the case in the principal component model in which the errors
may be correlated.

Further differences between the various methods concern the criterion that is
optimized and the amount of computer effort required to obtain estimates. Gen-
erally speaking, the least-squares and maximum likelihood methods, which use

FACTOR_ANALYSIS Function 431

iterative algorithms, require the most computer time with the principal factor,
principal component and the image methods requiring much less time since the
algorithms in these methods are not iterative. The algorithm in alpha-factor
analysis is also iterative, but the estimates in this method generally require
somewhat less computer effort than the least squares and maximum likelihood
estimates. In all methods, one eigensystem analysis is required on each iteration.

Principal Component and Principal Factor Methods

Both the principal component and principal factor methods compute the factor-
loading estimates as

,

where Γ and the diagonal matrix ∆ are the eigenvectors and eigenvalues of a
matrix. In the principal component model, the eigensystem analysis is per-
formed on the sample covariance (correlation) matrix S, while in the principal
factor model, the matrix (S + Ψ) is used. If the unique error variances Ψ are not
known in the principal factor mode, then FACTOR_ANALYSIS obtains esti-
mates for them.

The basic idea in the principal component method is to find factors that maxi-
mize the variance in the original data that is explained by the factors. Because
this method allows the unique errors to be correlated, some factor analysts insist
that the principal component method is not a factor analytic method. Usually,
however, the estimates obtained by the principal component model and factor
analysis model are quite similar.

It should be noted that both the principal component and principal factor meth-
ods give different results when the correlation matrix is used in place of the
covariance matrix. In fact, any rescaling of the sample covariance matrix can
lead to different estimates with either of these methods. A further difficulty with
the principal factor method is the problem of estimating the unique error vari-
ances. Theoretically, these variances must be known in advance and must be
passed to FACTOR_ANALYSIS using the keyword Unique_Var_In. In prac-
tice, the estimates of these parameters are produced by FACTOR_ANALYSIS
when Unique_Var_In is not specified. In either case, the resulting adjusted
covariance (correlation) matrix

Γ
ˆ

∆
ˆ 1 2⁄–

S Ψ
ˆ

–

432 Chapter 9: Multivariate Analysis PV-WAVE:IMSL Statistics Reference

may not yield the n_factors positive eigenvalues required for n_factors factors
to be obtained. If this occurs, the user must either lower the number of factors
to be estimated or give new unique error variance values.

Least-squares and Maximum Likelihood Methods

Unlike the previous two methods, the algorithm used to compute estimates in
this section is iterative (see Jöreskog 1977). As with the principal factor model,
the user can either initialize the unique error variances or allow
FACTOR_ANALYSIS to compute initial estimates. Unlike the principal factor
method, FACTOR_ANALYSIS optimizes the criterion function with respect to
both Ψ and Γ. (In the principal factor method, Ψ is assumed to be known.
Given Ψ, estimates for Λ may be obtained.)

The major difference between the methods discussed in this section is in the cri-
terion function that is optimized. Let S denote the sample covariance
(correlation) matrix, and let Σ denote the covariance matrix that is to be esti-
mated by the factor model. In the unweighted least-squares method, also called
the iterated principal factor method or the minres method (see Harman 1976, p.
177), the function minimized is the sum-of-squared differences between S and
Σ. This is written as

Φul = 0.5 (trace(S – Σ)2).

Generalized least-squares and maximum-likelihood estimates are asymptoti-
cally equivalent methods. Maximum-likelihood estimates maximize the (normal
theory) likelihood

{φml = trace(Σ–1S) – log(| Σ–1S |)}, while generalized least squares optimizes
the function Φgs = trace(ΣS –1 – I)2.

In all three methods, a two-stage optimization procedure is used. This proceeds
by first solving the likelihood equations for Λ in terms of Ψ and substituting the
solution into the likelihood. This gives a criterion φ(Ψ, Λ(Ψ)), which is opti-
mized with respect to Ψ. In the second stage, the estimates

are obtained from the estimates for Ψ.

The generalized least-squares and maximum-likelihood methods allow for the
computation of a statistic (Chi_Sq_Test) for testing that n_factors common fac-
tors are adequate to fit the model. This is a chi-squared test that all remaining

Λ
ˆ

FACTOR_ANALYSIS Function 433

parameters associated with additional factors are zero. If the probability of a
larger chi-squared is so small that the null hypothesis is rejected, then additional
factors are needed (although these factors may not be of any practical impor-
tance). Failure to reject does not legitimize the model. The statistic Chi_Sq_Test
is a likelihood ratio statistic in maximum likelihood estimation. As such, it
asymptotically follows a chi-squared distribution with degrees of freedom given
by Df.

The Tucker and Lewis reliability coefficient, ρ, is returned by Tucker_Coef
when the maximum likelihood or generalized least-squares methods are used.
This coefficient is an estimate of the ratio of explained variation to the total
variation in the data. It is computed as follows:

where | S | is the determinant of covariances;
p = N_ELEMENTS(covariances(0, *));
k = N_ELEMENTS(covariances(0, *));
φ is the optimized criterion; and d = Df.

Image Analysis

The term image analysis is used here to denote the noniterative image method
of Kaiser (1963), rather than the image analysis discussed by Harman (1976, p.
226). The image method (as well as the alpha-factor analysis method) begins
with the notion that only a finite number from an infinite number of possible
variables have been measured. The image-factor pattern is calculated under the
assumption that the ratio of the number of factors to the number of observed
variables is near zero, so that a very good estimate for the unique error vari-
ances (for standardized variables) is given as 1 minus the squared multiple

ρ
mMo mMk–

mMo 1–
-----------------------------=

m d
2p 5+

6
---------------–

2k
6

------–=

M0
ln S()–

p p 1–() 2⁄
---------------------------=

Mk
φ

p k–()2 p– k–() 2⁄
--=

434 Chapter 9: Multivariate Analysis PV-WAVE:IMSL Statistics Reference

correlation of the variable under consideration with all variables in the covari-
ance matrix.

First, the matrix D2 = (diag(S –1)) –1 is computed, where the operator “diag”
results in a matrix consisting of the diagonal elements of its argument and S is
the sample covariance (correlation) matrix. Then, the eigenvalues Λ and eigen-
vectors Γ of the matrix D –1SD–1 are computed. Finally, the unrotated image-
factor pattern is computed as DΓ [(Λ – I)2 Λ–1]1 / 2.

Alpha-factor Analysis

The alpha-factor analysis method of Kaiser and Caffrey (1965) finds factor-
loading estimates to maximize the correlation between the factors and the com-
plete universe of variables of interest. The basic idea in this method is that only
a finite number of variables out of a much larger set of possible variables is
observed. The population factors are linearly related to this larger set, while the
observed factors are linearly related to the observed variables. Let f denote the
factors obtainable from a finite set of observed random variables, and let ξ
denote the factors obtainable from the universe of observable variables. Then,
the alpha method attempts to find factor-loading estimates so as to maximize
the correlation between f and ξ. In order to obtain these estimates, the iterative
algorithm of Kaiser and Caffrey (1965) is used.

Comments

1. Function FACTOR_ANALYSIS makes no attempt to solve for n_factors. In
general, if n_factors is not known in advance, several different values of
n_factors should be used and the most reasonable value kept in the final
solution.

2. Iterative methods are generally thought to be superior from a theoretical
point of view, but in practice, often lead to solutions that differ little from
the noniterative methods. For this reason, it is usually suggested that a non-
iterative method be used in the initial stages of the factor analysis and that
the iterative methods be used when issues such as the number of factors
have been resolved.

3. Initial estimates for the unique variances can be input. If the iterative meth-
ods fail for these values, new initial estimates should be tried. These can be
obtained by use of another factoring method. (Use the final estimates from
the new method as the initial estimates in the old method.)

FACTOR_ANALYSIS Function 435

Example 1

In this example, factor analysis is performed for a nine-variable matrix using
the default method of unweighted least squares. This example opens a file,
cov.dat, and reads in the covariance matrix using procedure RMF. The file
cov.dat contains the following data:

1.0 0.523 0.395 0.471 0.346 0.426 0.576 0.434 0.639

0.523 1.0 0.479 0.506 0.418 0.462 0.547 0.283 0.645

0.395 0.479 1.0 0.355 0.27 0.254 0.452 0.219 0.504

0.471 0.506 0.355 1.0 0.691 0.791 0.443 0.285 0.505

0.346 0.418 0.27 0.691 1.0 0.679 0.383 0.149 0.409

0.426 0.462 0.254 0.791 0.679 1.0 0.372 0.314 0.472

0.576 0.547 0.452 0.443 0.383 0.372 1.0 0.385 0.68

0.434 0.283 0.219 0.285 0.149 0.314 0.385 1.0 0.47

0.639 0.645 0.504 0.505 0.409 0.472 0.68 0.47 1.0

OPENR, unit, ’cov.dat’, /Get_Lun

RMF, unit, covariances, 9, 9

CLOSE, unit

n_factors = 3

a = FACTOR_ANALYSIS(cov, n_factors)

PM, a, Title = "Unrotated Loadings:"

Unrotated Loadings:

 0.701801 -0.231594 0.0795559

0.719964 -0.137227 -0.208225

0.535122 -0.214389 -0.22709

0.790669 0.405017 0.00704257

0.653203 0.422066 -0.104563

0.753915 0.484247 0.160720

0.712674 -0.281911 -0.0700779

0.483540 -0.262720 0.461992

0.819210 -0.313728 -0.0198735

Example 2

The following data were originally analyzed by Emmett (1949). There are 211
observations on nine variables. Following Lawley and Maxwell (1971), three
factors are obtained by the method of maximum likelihood. This example uses
the same data as the first example.

OPENR, unit, ’cov.dat’, /Get_Lun

RMF, unit, covariances, 9, 9

436 Chapter 9: Multivariate Analysis PV-WAVE:IMSL Statistics Reference

CLOSE, unit

n_factors = 3

a = FACTOR_ANALYSIS(cov, n_factors, $

Max_Likelihood=210, Switch_Eps=0.01, $

Eps=0.000001, Itmax=30, Max_Steps=10)

PM, a, Title = "Unrotated Loadings:"

Unrotated Loadings:

 0.664210 -0.320874 0.0735207
0.688833 -0.247138 -0.193280

 0.492616 -0.302161 -0.222433
 0.837198 0.292427 -0.0353954
 0.705002 0.314794 -0.152784
 0.818701 0.376672 0.104524
 0.661494 -0.396031 -0.0777453
 0.457925 -0.295526 0.491347
 0.765668 -0.427427 -0.0116992

Warning Errors

STAT_VARIANCES_INPUT_IGNORED — When using the keyword
Princ_Comp, the unique variances are assumed to be zero. Input for
Unique_Var_In is ignored.

STAT_TOO_MANY_ITERATIONS — Too many iterations. Convergence is
assumed.

STAT_NO_DEG_FREEDOM — No degrees of freedom for the significance
testing.

STAT_TOO_MANY_HALVINGS — Too many step halvings. Convergence is
assumed.

Fatal Errors

STAT_HESSIAN_NOT_POS_DEF — Approximate Hessian is not semidefi-
nite on iteration #. The computations cannot proceed. Try using different initial
estimates.

STAT_FACTOR_EVAL_NOT_POS — Variable Eigenvalues(#) = #. An eigen-
value corresponding to a factor is negative or zero. Either use different initial
estimates for Unique_Var_In or reduce the number of factors.

STAT_COV_NOT_POS_DEF — Parameter covariances is not positive
semidefinite. The computations cannot proceed.

DISCR_ANALYSIS Procedure 437

STAT_COV_IS_SINGULAR — Matrix covariances is singular. The computa-
tions cannot continue because variable # is linearly related to the remaining
variables.

STAT_COV_EVAL_ERROR — An error occurred in calculating the eigenval-
ues of the adjusted (inverse) covariance matrix. Check covariances.

STAT_ALPHA_FACTOR_EVAL_NEG — In alpha-factor analysis on iteration #,
eigenvalue # is #. As all eigenvalues corresponding to the factors must be posi-
tive, either the number of factors must be reduced or new initial estimates for
Unique_Var_In must be given.

DISCR_ANALYSIS Procedure
Performs a linear or a quadratic discriminant function analysis among several
known groups.

Usage

DISCR_ANALYSIS, x, n_groups

Input Parameters

x — Two-dimensional array of size n_rows by n_variables + 1 containing the
data where n_rows = N_ELEMENTS(x(*,0)), the number of rows to be pro-
cessed and n_variables = number of variables to be used in the discrimination.
The first n_variables columns correspond to the variables, and the last column
contains the group numbers. The groups must be numbered 1, 2, ..., n_groups.

n_groups — Number of groups in the data.

Input Keywords

Double — If present and nonzero, double precision is used.

Idx_Cols — One-dimensional array containing the indices of the variables to be
used in the analysis.

Idx_Vars — Three element array indicating the column numbers of x
in which particular types of data are stored. Columns are numbered
0 ... N_ELEMENTS(Idx_Cols) − 1.

Idx_Vars(0) contains the index for the column of x in which the group numbers
are stored.

438 Chapter 9: Multivariate Analysis PV-WAVE:IMSL Statistics Reference

Idx_Vars(1) and Idx_Vars(2) contain the column numbers of x in which the fre-
quencies and weights, respectively, are stored. Set Idx_Vars(1) = −1 if there
will be no column for frequencies. Set Idx_Vars(2) = −1 if there will be no col-
umn for weights. Weights are rounded to the nearest integer. Negative weights
are not allowed.

Defaults: Idx_Cols = 0, 1, ..., n_variables - 1,

 Idx_Vars(0) = n_variables,

 Idx_Vars(1) = −1, and

 Idx_Vars(2) = −1

Method — Method of discrimination. The method chosen determines whether
linear or quadratic discrimination is used, whether the group covariance matri-
ces are computed (the pooled covariance matrix is always computed), and
whether the leaving-out-one or the reclassification method is used to classify
each observation.

In the leaving-out-one method of classification, the posterior probabilities are
adjusted so as to eliminate the effect of the observation from the sample statis-
tics prior to its classification. In the classification method, the effect of the ob-
servation is not eliminated from the classification function.

Default: Method = 1

Prior_Equal — By default, (or if Prior_Equal is used), equal prior probabilities
are calculated as 1.0/n_groups. Keywords Prior_Equal, Prior_Prop, and
Prior_Input must not be used together.

Prior_Prop — If present, prior probabilities are calculated to be proportional to
the sample size in each group. Keywords Prior_Prop, Prior_Equal, and
Prior_Input must not be used together.

Method
discrimination
method

covariances
computed

classification
method

1 linear pooled, group reclassification

2 quadratic pooled, group reclassification

3 linear pooled reclassification

4 linear pooled, group leaving-out-one

5 quadratic pooled, group leaving-out-one

6 linear pooled leaving-out-one

DISCR_ANALYSIS Procedure 439

Prior_Input — If present, an array of length n_groups containing the prior
probabilities for each group, such that the sum of all prior probabilities is equal
to 1.0. Keywords Prior_Input, Prior_Equal, and Prior_Prop must not be used
together.

Output Keywords

Prior_Output — Named variable into which an one-dimensional array of length
n_groups containing the most recently calculated or input prior probabilities is
stored.

Group_Counts — Named variable into which an one-dimensional integer array
of length n_groups containing the number of observations in each group is
stored.

Means — Named variable into which a two-dimensional array of size
n_groups by n_variables containing the variable means is stored. The i-th row
of means contains the group i variable means.

Covariances — Named variable into which a three-dimensional array of size g
by n_variables by n_variables containing covariance results is stored. The with-
in-group covariance matrices (Method 1, 2, 4, and 5 only) is the first g-1 matri-
ces, and the pooled covariance matrix is the g-th matrix.

Coefficients — Named variable into which a two-dimensional array of size
n_groups by (n_variables + 1) containing the linear discriminant coefficients is
stored. The first column of Coefficients contains the constant term, and the re-
maining columns contain the variable coefficients. Row i − 1 of Coefficients
corresponds to group i, for i = 1, 2, ..., n_variables + 1. Array Coefficients are
always computed as the linear discriminant function coefficients even when
quadratic discrimination is specified.

Class_Member — Named variable into which an one-dimensional integer array
of length n_rows containing the group to which the observation was classified is
stored.

If an observation has an invalid group number, frequency, or weight when the
leaving-out-one method has been specified, then the observation is not classified
and the corresponding elements of Class_Member (and Prob, see Prob below)
are set to zero.

Class_Table — Named variable into which a two-dimensional array of size
n_groups by n_groups containing the classification table is stored. Each obser-
vation that is classified and has a group number 1.0, 2.0, ..., n_groups is entered
into the table. The rows of the table correspond to the known group member-
ship. The columns refer to the group to which the observation was classified.

Prob — Named variable into which a two-dimensional array of size

440 Chapter 9: Multivariate Analysis PV-WAVE:IMSL Statistics Reference

n_rows by n_groups containing the posterior probabilities for each
observation is stored.

Mahalanobis — Named variable into which a two-dimensional array of size
n_groups by n_groups containing the Mahalanobis distances

between the group means is stored.

For linear discrimination, the Mahalanobis distance is computed using the
pooled covariance matrix. Otherwise, the Mahalanobis distance

between group means i and j is computed using the within covariance matrix
for group i in place of the pooled covariance matrix.

Stats — Named variable into which an one-dimensional array of length
4 + 2 * (n_groups + 1) containing various statistics of interest is stored. The
first element of Stats is the sum of the degrees of freedom for the within-covari-
ance matrices. The second, third, and fourth elements of Stats correspond to the
chi-squared statistic, its degrees of freedom, and the probability of a greater chi-
squared, respectively, of a test of the homogeneity of the within-covariance ma-
trices (not computed if Method is equal to 3 or 6). The fifth through
5 + n_groups elements of Stats contain the log of the determinants of each
group’s covariance matrix (not computed if Method is equal to 3 or 6) and of
the pooled covariance matrix (element 4 + n_groups). Finally, the last n_groups
+ 1 elements of Stats contain the sum of the weights within each group, and in
the last position, the sum of the weights in all groups.

Nmissing — Named variable into which the number of rows of data encoun-
tered containing missing values (NaN) for the classification, group, weight, and/
or frequency variables is stored. If a row of data contains a missing value
(NaN) for any of these variables, that row is excluded from the computations.

Comments

1. Common choices for the Bayesian prior probabilities are given by:
Prior_Input(i) = 1.0/n_groups (equal priors)
Prior_Input(i) = Group_Count/n_rows (proportional priors)

Dij
2

Dij
2

DISCR_ANALYSIS Procedure 441

Prior_Input(i) = Past history or subjective judgment.
In all cases, the priors should sum to 1.0.

Discussion

Function DISCR_ANALYSIS performs discriminant function analysis using ei-
ther linear or quadratic discrimination. The output includes a measure of dis-
tance between the groups, a table summarizing the classification results, a
matrix containing the posterior probabilities of group membership for each ob-
servation, and the within-sample means and covariance matrices. The linear dis-
criminant function coefficients are also computed.

Covariance matrices are defined as follows: Let Ni denote the sum of the fre-
quencies of the observations in group i and Mi denote the number of observa-
tions in group i. Then, if Si denotes the within-group i covariance matrix,

Where wj is the weight of the j-th observation in group i, fj is the frequency, xj
is the j-th observation column vector (in group i), and

denotes the mean vector of the observations in group i. The mean vectors are
computed as

Given the means and the covariance matrices, the linear discriminant function
for group i is computed as:

S
N

w f x x x xi
i

j
j

Mi
j j j

T
=

−
∑ − −
=

1

1 1
� �� �

x

x
W

w f x W w fj
j

Mi
j j i j j

j

Mi
= ∑ = ∑

= =
()

1

1 1i
where

z p x S x x S xi i i
T

p i
T

p i= − +− −ln .� � 05 1 1

442 Chapter 9: Multivariate Analysis PV-WAVE:IMSL Statistics Reference

where ln (pi) is the natural log of the prior probability for the i-th group, x is the
observation to be classified, and Sp denoted the pooled covariance matrix.

Let S denote either the pooled covariance matrix of one of the within-group co-
variance matrices Si. (S will be the pooled covariance matrix in linear discrimi-
nation, and Si otherwise.) The Mahalanobis distance between group i and group
j is computed as:

Finally, the asymptotic chi-squared test for the equality of covariance matrices
is computed as follows (Morrison 1976, p. 252):

where ni is the number of degrees of freedom in the i-th sample covariance ma-
trix, k is the number of groups, and

where p is the number of variables.

The estimated posterior probability of each observation x belonging to group is
computed using the prior probabilities and the sample mean vectors and esti-
mated covariance matrices under a multivariate normal assumption. Under qua-
dratic discrimination, the within-group covariance matrices are used to compute
the estimated posterior probabilities. The estimated posterior probability of an
observation x belonging to group i is

D x x S x xij i j
T

i j
2 1= − −−� � � �

γ = ∑ −−

=
C n S Si

i

k

p i
1

1
ln ln� � � �� �

C
p p

p k n ni j
j

i

k−

=
= − + −

+ −
−

∑
∑

�
�

�
��

1
2

1

1 2 3 1

6 1 1

1 1

� �� �

$

exp .

exp .
q x

D x

D x
i

i

j
j

k� �
� �� �
� �� �

=
−

−∑
=

05

05

2

2

1

DISCR_ANALYSIS Procedure 443

where

For the leaving-out-one method of classification (Method equal to 4, 5 or 6), the
sample mean vector and sample covariance matrices in the formula for

are adjusted so as to remove the observation x from their computation. For lin-
ear discrimination (Method equal to 1, 2, 4, or 6), the linear discriminant func-
tion coefficients are actually used to compute the same posterior probabilities.

Using the posterior probabilities, each observation in x is classified into a
group; the result is tabulated in the array Class_Table and saved in the array
Class_Member. Array Class_Table is not altered at this stage if
x(i)(Idx_Vars(0)) contains a group number that is out of range. If the reclas-
sification method is specified, then all observations with no missing values in
the n_variables classification variables are classified. When the leaving-out-one
method is used, observations with invalid group numbers, weights, frequencies,
or classification variables are not classified. Regardless of the frequency, a 1 is
added (or subtracted) from Class_Table for each row of x that is classified and
contains a valid group number.

When Method > 3, adjustment is made to the posterior probabilities to remove
the effect of the observation in the classification rule. In this adjustment, each
observation is presumed to have a weight of x(i)(Idx_Vars(2)) if Idx_Vars(2) >
−1 (and a weight of 1.0 if Idx_Vars(2) = −1), and a frequency of 1.0. See
Lachenbruch (1975, p. 36) for the required adjustment.

The covariance matrices are computed from their LU factorizations.

Example

The following example uses liner discrimination with equal prior probabilities
on Fisher’s (1936) iris data.

PRO print_results, counts, table, d2, prior_out, coef, means, $

 cov, stats, nrmiss

D x
x x S x x S p

x x S x x p
i

i
T

i i i i

i
T

p i i

2
1

1

2

2 3
� � � � � � � �

� � � � � �
=

− − + − =

− − − =

�
�	

	

−

−

ln ln

ln

Method

Method

 1 or 2

Di
2

444 Chapter 9: Multivariate Analysis PV-WAVE:IMSL Statistics Reference

 num = INDGEN(3)

 PRINT, " Counts"

 PRINT, num + 1, Format = "(3I5)"

 PRINT, counts, Format = "(3I5)"

 PRINT

 PRINT, " Table"

 PRINT, num + 1, Format = "(2X, 3I5)"

 FOR i = 0, 2 DO $

 PRINT, num(i) + 1, table(i, *), Format = "(I2, 3I5)"

 PRINT

 PRINT, " D2"

 PRINT, num + 1, Format = "(3I7)"

 FOR i = 0, 2 DO $

 PRINT, num(i) + 1, d2(i, *), Format = "(I2, 3F7.1)"

 PRINT

 PRINT, " Prior OUT"

 PRINT, num + 1, Format = "(3I10)"

 PRINT, prior_out, Format = "(3F10.4)"

 PRINT

 num = INDGEN(5)

 PRINT, " Coef"

 PRINT, num + 1, Format = "(1X, 5I10)

 FOR i = 0, 2 DO $

 PRINT, num(i) + 1, coef(i, *), Format = "(I2, 5F10.1)"

 PRINT

 num = INDGEN(4)

 PRINT, " Means"

 PRINT, num + 1, Format = "(4I10)"

 FOR i = 0, 2 DO $

 PRINT, num(i) + 1, means(i, *), Format = "(I2, 4F10.3)"

 PRINT

 PRINT, " Covariance"

 PRINT, num + 1, Format = "(4I10)"

 FOR i = 0, 3 DO $

DISCR_ANALYSIS Procedure 445

 PRINT, num(i) + 1, cov(0, *, i), Format = "(I2, 4F10.4)"

 PRINT

 num = INDGEN(12)

 PRINT, " Stats"

 FOR i = 0, 11 DO $

 PRINT, num(i) + 1, stats(i)

 PRINT

 PRINT, "nrmiss = ", nrmiss

END

idxv = [1, 2, 3, 4]

idxc = [0, -1, -1]

n_groups = 3

method = 3

; Retrieve the Fisher Iris Data Set

x = STATDATA(3)

DISCR_ANALYSIS, x, n_groups, Idx_Vars = idxv, $

 Idx_cols = idxc, Method = method, /Prior_Equal, $

 Prior_Output = prior_out, Group_Counts = counts, $

 Means = means, Covariances = cov, $

 Coefficients = coef, Class_Member = cm, $

 Class_Table = table, Prob = prob, $

 Mahalanobis = d2, Stats = stats, Nmissing = nrmiss

print_results, counts, table, d2, prior_out, coef, means, $

 cov, stats, nrmiss

 Counts

 1 2 3

 50 50 50

 Table

 1 2 3

 1 50 0 0

 2 0 48 2

 3 0 1 49

 D2

446 Chapter 9: Multivariate Analysis PV-WAVE:IMSL Statistics Reference

 1 2 3

 1 0.0 89.9 179.4

 2 89.9 0.0 17.2

 3 179.4 17.2 0.0

 Prior OUT

 1 2 3

 0.3333 0.3333 0.3333

 Coef

 1 2 3 4 5

 1 -86.3 23.5 23.6 -16.4 -17.4

 2 -72.9 15.7 7.1 5.2 6.4

 3 -104.4 12.4 3.7 12.8 21.1

 Means

 1 2 3 4

 1 5.006 3.428 1.462 0.246

 2 5.936 2.770 4.260 1.326

 3 6.588 2.974 5.552 2.026

 Covariance

 1 2 3 4

 1 0.2650 0.0927 0.1675 0.0384

 2 0.0927 0.1154 0.0552 0.0327

 3 0.1675 0.0552 0.1852 0.0427

 4 0.0384 0.0327 0.0427 0.0419

 Stats

 1 147.000

 2 NaN

 3 NaN

 4 NaN

 5 NaN

 6 NaN

 7 NaN

 8 -9.95854

 9 50.0000

DISCR_ANALYSIS Procedure 447

 10 50.0000

 11 50.0000

 12 150.000

nrmiss = 0

Warning Errors

STAT_BAD_OBS_1 — In call #, row # of the data matrix, “x”, has group num-
ber = #. The group number must be an integer between 1.0 and “n_groups” = #,
inclusively. This observation will be ignored.

STAT_BAD_OBS_2 — The leaving-out-one method is specified but this obser-
vation does not have a valid group number (Its group number is #.). This obser-
vation (row #) is ignored.

STAT_BAD_OBS_3 — The leaving-out-one method is specified but this obser-
vation does not have a valid weight or it does not have a valid frequency. This
observation (row #) is ignored.

STAT_COV_SINGULAR_3 — The group # covariance matrix is singular.
“Stats(1)” cannot be computed. “Stats(1)” and “Stats(3)” are set to the missing
value code (NaN).

Fatal Errors

STAT_COV_SINGULAR_1 — The variance-covariance matrix for population
number # is singular. The computations cannot continue.

STAT_COV_SINGULAR_2 — The pooled variance-covariance matrix is singu-
lar. The computations cannot continue.

STAT_COV_SINGULAR_4 — A variance-covariance matrix is singular. The
index of the first zero element is equal to #.

448 Chapter 9: Multivariate Analysis PV-WAVE:IMSL Statistics Reference

449

CHAPTER

10

Survival Analysis

Contents of Chapter
Analyzes survival data using a generalized
linear model and estimates using various
parametric modes.................. SURVIVAL_GLM Function

Introduction
The routine described in this chapter have primary application in the areas of
reliability and life testing, but they may find application in any situation in
which time is a variable of interest. Kalbfleisch and Prentice (1980), Elandt-
Johnson and Johnson (1980), Lee (1980), Gross and Clark (1975), Lawless
(1982), and Chiang (1968) are references for discussing the models and meth-
ods used here. Routine SURVIVAL_GLM (page 450) fits any of several gener-
alized linear models, and computes estimates of survival probabilities based on
the same models.

450 Chapter 10: Survival Analysis PV-WAVE:IMSL Statistics Reference

SURVIVAL_GLM Function
Analyzes censored survival data using a generalized linear model and estimates
survival probabilities and hazard rates for the various parametric models.

Usage

result = SURVIVAL_GLM(n_class, n_continuous, model, x)

Input Parameters

n_class — Number of classification variables.

n_continuous — Number of continuous variables.

model — Specifies the model used to analyze the data.

See the Discussion section for more information about these models.

x — Two-dimensional array of size n_observations by ((n_class +
n_continuous) + m) containing data for the independent variables, dependent
variable, and optional parameters where n_observations is the number of obser-
vations and the optional parameters correspond to keywords Icen, Ilt, Irt, Ifreq,
and Ifix.

model PDF of the Response Variable

0 Exponential

1 Linear hazard

2 Log-normal

3 Normal

4 Log-logistic

5 Logistic

6 Log least extreme value

7 Least extreme value

8 Log extreme value

9 Extreme value

10 Weibull

SURVIVAL_GLM Function 451

The columns must be ordered such that the first n_class columns contain data
for the class variables, the next n_continuous columns contain data for the con-
tinuous variables, and the next column contains the response variable. The final
(and optional) m − 1 columns contain the optional parameters.

Returned Value

result — An integer value indicating n_coefficients, where n_coefficients is the
number of estimated coefficients in the model.

Input Keywords

Double — If present and nonzero, double precision is used.

Icen — The column in x containing the censoring code for each observation.

Ilt — The column number of x containing the upper endpoint of the failure in-
terval for interval- and left-censored observations.

Irt — The column number of x containing the lower endpoint of the failure in-
terval for interval- and right-censored observations.

Ifreq — The column number of x containing the frequency of response for each
observation.

Ifix — Column number in x containing a fixed parameter for each observation
that is added to the linear response prior to computing the model parameter. The
“fixed” parameter allows one to test hypothesis about the parameters via the
log-likelihoods.

Eps — The convergence criterion. Convergence is assumed when the maxi-
mum relative change in any coefficient estimate is less than Eps from one itera-
tion to the next or when the relative change in the log-likelihood, criterion, from
one iteration to the next is less than Eps/100.0.

x (I, Icen) Censoring type

0 Exact failure at x (i, Irt)

1 Right Censored. The response is greater than x (i, Irt)

2 Left Censored. The response is less than or equal to x
(i, Irt)

3 Interval Censored. The response is greater than x (i,
Irt), but less than or equal to x (i, Irt).

452 Chapter 10: Survival Analysis PV-WAVE:IMSL Statistics Reference

Default: Eps = 0.001

Itmax — Maximum number of iterations. Use Itmax = 0 to compute the Hes-
sian, stored in Covariances, and the Newton step, stored in Last_Step, at the ini-
tial estimates (The initial estimates must be input. Use keyword Init_Est). See
Example 3.

Default: Itmax = 30

No_Intercept — If present and nonzero, there is no intercept in the model. By
default, the intercept is automatically included in the model.

Lp_Max — Remove a right- or left-censored observation from the log-likeli-
hood whenever the probability of the observation exceeds 0.995. At conver-
gence, use linear programming to check that all removed observations actually
have infinite linear response

Obs_Status(i) is set to 2 if the linear response is infinite (See output keyword
Obs_Status). If not all removed observations have infinite linear response, re-
compute the estimates based upon the observations with finite

Keyword Lp_Max is the maximum number of observations that can be handled
in the linear programming. Setting Lp_Max = n_observations is always suffi-
cient. By default, the function iterates without checking for infinite estimates.

Default: No infinity checking; Lp_Max = 0

Var_Effects — One-dimensional array of length n_effects containing the num-
ber of variables associated with each effect in the model, where n_effects is the
number of effects (sources of variation) in the model. Keywords Var_Effects
and Indicies_Effects must be used together.

Indicies_Effects — One-dimensional index array of length Var_Effects(0) +
Var_Effects(1) + … + Var_Effects(n_effects − 1). The first Var_Effects(0) ele-
ments give the column numbers of x for each variable in the first effect. The
next Var_Effects(1) elements give the column numbers for each variable in the
second effect. The last Var_Effects(n_effects − 1) elements give the column
numbers for each variable in the last effect. Keywords Indicies_Effects and
Var_Effects must be used together.

zi
$β

zi
$β

SURVIVAL_GLM Function 453

Init_Est — One-dimensional array containing the initial estimates of the param-
eters (which requires that the user know the number of coefficients in the model
prior to the use of SURVIVAL_GLM). See output keyword Coef_Stat for a de-
scription of the “nuisance” parameter, which is the first element of array
Init_Est. By default, unweighted linear regression is used to obtain initial esti-
mates.

Max_Class — An upper bound on the sum of the number of distinct values tak-
en on by each classification variable. Internal workspace usage can be signifi-
cantly reduced with an appropriate choice of Max_Class.

Default: Max_Class = n_observations * n_class

Estimation Input Keywords

Est_Nobs — Number of observations for which estimates are to be calculated.
Est_Nobs must be positive. Keywords Est_Nobs, Est_Time, Est_Npt, Est_Delta,
and Est_Prob must be used together.

Est_Time — Beginning of the time grid for which estimates are desired. Sur-
vival probabilities and hazard rates are computed for each covariate vector over
the grid of time points Est_Time + i*Est_Delta for i = 0, 1, …, Est_Npt −1.
Keywords Est_Time, Est_Nobs, Est_Npt, Est_Delta, and Est_Prob must be used
together.

Est_Npt — Number of points on the time grid for which survival probabilities
are desired. Est_Npt must be positive. Keywords Est_Npt, Est_Nobs, Est_Time,
Est_Delta, and Est_Prob must be used together.

Est_Delta — Increment between time points on the time grid. Keywords
Est_Delta, Est_Nobs, Est_Time, Est_Npt, and Est_Prob must be used together.

Output Keywords

N_Class_Vals — Named variable into which an one-dimensional array of
length n_class containing the number of values taken by each classification
variable is stored; the i-th classification variable has N_Class_Vals(i).

Class_Vals — Named variable into which an one-dimensional array of length

containing the distinct values of the classification variables in ascending order is
stored. The first N_Class_Vals(0) elements of Class_Vals contain the values for

N_ Class_ Vals i
n_class � �

i=
∑

0

1-

454 Chapter 10: Survival Analysis PV-WAVE:IMSL Statistics Reference

the first classification variables, the next N_Class_Vals(1) elements contain the
values for the second classification variable, etc.

Coef_Stat — Named variable into which a two-dimensional array of size
n_coefficients by 4 containing the parameter estimates and associated statistics
is stored:

When present in the model, the first coefficient in Coef_Stat is the estimate of
the “nuisance” parameter, and the remaining coefficients are estimates of the
parameters associated with the “linear” model, beginning with the intercept, if
present. Nuisance parameters are as follows:

Criterion — Named variable into which the optimized criterion is stored. The
criterion to be maximized is a constant plus the log-likelihood.

Covariances — Named variable into which a two-dimensional array of size
n_coefficients by n_coefficients containing the estimated asymptotic covariance
matrix of the coefficients is stored. For Itmax = 0, this is the Hessian computed
at the initial parameter estimates.

Means — Named variable into which an one-dimensional array containing the
means of the design variables is stored. The array is of length n_coefficients − k
if keyword No_Intercept is used, and of length n_coefficients − k − 1 otherwise.
Here, k is equal to 0 if model = 0, and equal to 1 otherwise.

Case_Analysis — Named variable into which a two-dimensional array of size
n_observations by 5 containing the case analysis below is stored:

Column Statistic

0 Coefficeient estimate.

1 Estimated standard deviation of the estimated
coefficient.

2 Asymptotic normal score for testing that the
coefficient is zero.

3 The p-value associated with the normal score
in Column 2.

model

0 No nuisance parameter

1 Coefficient of the quadratic term, term in time, θ

2-9 Scale parameter, σ

10 Scale parameter, θ

SURVIVAL_GLM Function 455

Last_Step — Named variable into which an one-dimensional array of length
n_coefficients containing the last parameter updates (excluding step halvings) is
stored. Keyword Last_Step is computed as the inverse of the matrix of second
partial derivatives times the vector of first partial derivatives of the log-likeli-
hood. When Itmax = 0, the derivatives are computed at the initial estimates.

Obs_Status — Named variable into which an one-dimensional array of length
n_observations indicating which observations are included in the extended like-
lihood is stored.

Iterations — Named variable into which a two-dimensional array of size, n by
5 containing information about each iteration of the analysis is stored, where n
is equal to the number of iterations.

Column Statistic

0 Estimated predicted value.

1 Estimated influence or leverage.

2 Estimated residual.

3 Estimated cumulative hazard..

4 Non-censored observation: Estimated density
at the observation failure time and covariate
values.
Censored observations: The corresponding
estimated probability.

Obs_Status (i) Status of Observation

0 Observation i is in the likelihood

1 Observation i cannot be in the likelihood because
it contains at least one missing value in x.

2 Observation i is not in the likelihood. Its esti-
mated parameter is infinite.

Column Statistic

0 Method of iteration
Q-N Step = 0
N-R Step = 1

1 Iteration number

2 Step size

456 Chapter 10: Survival Analysis PV-WAVE:IMSL Statistics Reference

Nmissing — Named variable into which the number of rows of data that con-
tain missing values in one or more of the following vectors or columns of x is
stored: Icen, Ilt, Irt, Ifreq, Ifix, or Indicies_Effects.

Estimation Output Keywords

Est_Prob — Named variable into which a two-dimensional array of size
Est_Npt by (2*n_observations + 1) containing the estimated survival probabili-
ties for the covariate groups specified in x is stored. Column 0 contains the sur-
vival time. Columns 1 and 2 contain the estimated survival probabilities and
hazard rates, respectively, for the covariates in the first row of x. In general, the
survival and hazard row i of x is contained in columns 2i - 1 and 2i, respective-
ly, for i = 1, 2, …, Est_Npt. Keywords Est_Prob, Est_Nobs, Est_Time,
Est_Npt, and Est_Delta must be used together.

Est_Xbeta — Named variable into which an one-dimensional array of length
n_observations containing the estimated linear response

for each row of x is stored. To use keyword Est_Xbeta, you must also use key-
words Est_Nobs, Est_Time, Est_Npt, Est_Delta, and Est_Prob.

Comments

1. Dummy variables are generated for the classification variables as follows:
An ascending list of all distinct values of each classification variable is ob-
tained and stored in Class_Vals. Dummy variables are then generated for
each but the last of these distinct values. Each dummy variable is zero un-
less the classification variable equals the list value corresponding to the
dummy variable, in which case the dummy variable is one. See keyword
Dummy_Method in the function REGRESSORS (Chapter 2, Regression).

2. The “product” of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy vari-
ables associated with the classification variable.

3 Maximum scaled coefficient update

4 Log-likelihood

Column Statistic

w x+ $β

SURVIVAL_GLM Function 457

3. The “product” of two classification variables yields dummy variables in the
usual manner. Each dummy variable associated with the first classification
variable multiplies each dummy variable associated with the second classifi-
cation variable. The resulting dummy variables are such that the index of
the second classification variable varies fastest.

Discussion

Function SURVIVAL_GLM computes the maximum likelihood estimates of pa-
rameters and associated statistics in generalized linear models commonly found
in survival (reliability) analysis. Although the terminology used will be from the
survival area, the methods discussed have applications in many areas of data
analysis, including reliability analysis and event history analysis. These methods
can be used anywhere a random variable from one of the discussed distributions
is parameterized via one of the models available in SURVIVAL_GLM. Thus,
while it is not advisable to do so, standard multiple linear regression can be per-
formed by routine SURVIVAL_GLM. Estimates for any of 10 standard models
can be computed. Exact, left-censored, right-censored, or interval-censored ob-
servations are allowed (note that left censoring is the same as interval censor-
ing with the left endpoint equal to the left endpoint of the support of the
distribution).

Let η = xTβ be the linear parameterization, where x is a design vector obtained
by SURVIVAL_GLM via function REGRESSORS from a row of x, and β is a
vector of parameters associated with the linear model. Let T denote the random
response variable and S(t) denote the probability that T > t. All models consid-
ered also allow a fixed parameter wi for observation i (input in column Ifix of
x). Use of this parameter is discussed below. There also may be nuisance pa-
rameters θ > 0, or σ > 0 to be estimated (along with β) in the various models.
Let Φ denote the cumulative normal distribution. The survival models available
in SURVIVAL_GLM are:

model Name S(t)

0 Exponential exp [− t exp (w i + η)

1 Linear hazard

exp exp− +
�
�

�
�� +

�
�
��

�
�
��t

t
wi

θ η
2

2
� �

458 Chapter 10: Survival Analysis PV-WAVE:IMSL Statistics Reference

2 Log-normal

3 Normal

4 Log-logistic

5 Logistic

6 Log least extreme value

7 Least extreme value

8 Log extreme value

9 Extreme value

model Name S(t)

1−
− −�

�
�
��Φ

ln t wi� � η
σ

1− − −�
�

�
��Φ t wiη

σ

{ exp
ln

}1 1+
− −�

�
�
��

−t wi� � η
σ

{ exp }1 1+ − −�
�

�
��

−t wiη
σ

exp{ exp
ln

}−
− −�

�
�
��

t wi� � η
σ

exp{ exp }− − −�
�

�
��

t wiη
σ

1− −
− −�

�
�
��exp{ exp

ln
}

t wi� � η
σ

1− − − −�
�

�
��exp{ exp }

t wiη
σ

SURVIVAL_GLM Function 459

Note that the log-least-extreme-value model is a reparameterization of the
Weibull model. Moreover, models 0, 1, 2, 4, 6, 8, and 10 require that T > 0,
while all of the remaining models allow any value for T, −∞ < T < ∞.

Each row vector in the data matrix can represent a single observation; or,
through the use of vector frequencies, each row can represent several observa-
tions. Also note that classification variables and their products are easily incor-
porated into the models via the usual regression-type specifications.

The constant parameter Wi is input in x and may be used for a number of pur-
poses. For example, if the parameter in an exponential model is known to de-
pend upon the size of the area tested, volume of a radioactive mass, or
population density, etc., then a multiplicative factor of the exponential parame-
ter λ= exp (xβ) may be known apriori. This factor can be input in Wi (Wi is the
log of the factor).

An alternate use of Wi is as follows: It may be that λ = exp (x1β1 + x2β2),
where β2 is known. Letting Wi = x2β2, estimates for β1 can be obtained via
SURVIVAL_GLM with the known fixed values for β2. Standard methods can
then be used to test hypothesis about β1 via computed log-likelihoods.

Computational Details

The computations proceed as follows:

1. The input parameters are checked for consistency and validity.

• Estimates of the means of the “independent” or design variables are com-
puted. Means are computed as

2. If initial estimates are not provided by the user (see keyword Init_Est), the
initial estimates are calculated as follows:

10 Weibull

model Name S(t)

exp{
exp

}−
+

�
���

�
���

t

wi η

θ

� �

x
f x

f
i i

i
= ∑

∑

460 Chapter 10: Survival Analysis PV-WAVE:IMSL Statistics Reference

• Models 2-10

A. Kaplan-Meier estimates of the survival probability,

at the upper limit of each failure interval are obtained. (Because upper lim-
its are used, interval- and left-censored data are assumed to be exact failures
at the upper endpoint of the failure interval.) The Kaplan-Meier estimate is
computed under the assumption that all failure distributions are identical
(i.e., all β’s but the intercept, if present, are assumed to be zero).

B. If there is an intercept in the model, a simple linear regression is per-
form predicting

where t′ is computed at the upper endpoint of each failure interval,
t′ = t in models 3, 5, 7, and 9, and t′ = ln (t) in models 2, 4, 6, 8, and 10,
and wi is the fixed constant, if present.

If there is no intercept in the model, then α is fixed at zero, and the model

is fit instead. In this model, the coefficients β are used in place of the loca-
tion estimate α above. Here

is estimated from the simple linear regression with α = 0.

$S t� �

S S t w ti
− − = + ′1

$� �� � α φ

S S t t w xi
T− − ′ − =1

$ $� �� � φ β

SURVIVAL_GLM Function 461

C. If the intercept is in the model, then in log-location-scale models
(models 1-8),

and the initial estimate of the intercept is assumed to be

In the Weibull model

and the intercept is assumed to be

Initial estimates of all parameters β, other than the intercept, are assumed to
be zero.

If there is no intercept in the model, the scale parameter is estimated as
above, and the estimates

from Step 2 are used as initial estimates for the β’s.

• Models 0 and 1

For the exponential models (model = 0 or 1), the “average total time on”
test statistic is used to obtain an estimate for the intercept. Specifically, let
Tt denote the total number of failures divided by the total time on test. The
initial estimates for the intercept is then ln(Tt). Initial estimates for the

$
$σ φ=

$.α

$ / $θ φ= 1

$.α

$β

462 Chapter 10: Survival Analysis PV-WAVE:IMSL Statistics Reference

remaining parameters β are assumed to be zero, and if model = 1, the initial
estimate for the linear hazard parameter θ is assumed to be a small positive
number. When the intercept is not in the model, the initial estimate for the
parameter θ is assumed to be a small positive number, and initial estimates
of the parameters β are computed via multiple linear regression as in Part
A.

3. A quasi-Newton algorithm is used in the initial iterations based on a Hes-
sian estimate

where l′iα j is the partial derivative of the i-th term in the log-likelihood with
respect to the parameter αj, and aj denotes one of the parameters to be
estimated.

When the relative change in the log-likelihood from one iteration to the
next is 0.1 or less, exact second partial derivatives are used for the Hessian
so the Newton-Rapheson iteration is used.

If the initial step size results in an increase in the log-likelihood, the full
step is used. If the log-likelihood decreases for the initial step size, the step
size is halved, and a check for an increase in the log-likelihood performed.
Step-halving is performed (as a simple line search) until an increase in the
log-likelihood is detected, or until the step size becomes very small (the ini-
tial step size is 1.0).

4. Convergence is assumed when the maximum relative change in any coeffi-
cient update from one iteration to the next is less than Eps or when the rela-
tive change in the log-likelihood from one iteration to the next is less than
Eps/100. Convergence is also assumed after Itmax iterations or when step
halving leads to a very small step size with no increase in the log-likeli-
hood.

5. If requested (see keyword Lp_Max), then the methods of Clarkson and Jen-
nrich (1988) are used to check for the existence of infinite estimates in

$H l
j l i ji l

i
κ κ α α= ′∑

η βi i
Tx=

SURVIVAL_GLM Function 463

As an example of a situation in which infinite estimates can occur, suppose
that observation j is right-censored with tj > 15 in a normal distribution
model in which the mean is

where xj is the observation design vector. If the design vector xj for parame-
ter βm is such that xjm = 1 and xim = 0 for all i ≠ j, then the optimal
estimate of βm occurs at

leading to an infinite estimate of both βm and ηj. In SURVIVAL_GLM, such
estimates can be “computed.”

In all models fit by SURVIVAL_GLM, infinite estimates can only occur
when the optimal estimated probability associated with the left- or right-
censored observation is 1. If infinity checking is on, left- or right-censored
observations that have estimated probability greater than 0.995 at some
point during the iterations are excluded from the log-likelihood, and the
iterations proceed with a log-likelihood based on the remaining observa-
tions. This allows convergence of the algorithm when the maximum relative
change in the estimated coefficients is small and also allows for a more pre-
cise determination of observations with infinite

At convergence, linear programming is used to ensure that the eliminated
observations have infinite ηi. If some (or all) of the removed observations
should not have been removed (because their estimated ηi’s must be finite),
then the iterations are restarted with a log-likelihood based upon the finite
ηi observations. See Clarkson and Jennrich (1988) for more details.

µ β ηj j
T

jx= =

$βm = ∞

η βi i
Tx=

464 Chapter 10: Survival Analysis PV-WAVE:IMSL Statistics Reference

By default, or when not using keyword Lp_Max (see keyword Lp_Max), no
observations are eliminated during the iterations. In this case, the infinite
estimates occur, some (or all) of the coefficient estimates

will become large, and it is likely that the Hessian will become (numeri-
cally) singular prior to convergence.

6. The case statistics are computed as follows: Let Ii (θi) denote the log-like-
lihood of the i-th observation evaluated at θi, let I′i denote the vector of de-

rivatives of Ii with respect to all parameters, I′η,i denote the derivative of Ii

with respect to η = xTβ, H denote the Hessian, and E denote expectation.
Then the columns of Case_Analysis are:

A. Predicted values are computed as E (T/x) according to standard formu-
las. If model is 4 or 8, and if s ≥ 1, then the expected values cannot be
computed because they are infinite.

B. Following Cook and Weisberg (1982), the influence (or leverage) of the
i-th observation is assumed to be

This quantity is a one-step approximation of the change in the estimates
when the i-th observation is deleted (ignoring the nuisance parameters).

C. The “residual” is computed as I′η,i.

D. The cumulative hazard is computed at the observation covariate values
and, for interval observations, the upper endpoint of the failure interval. The
cumulative hazard also can be used as a “residual” estimate. If the model is
correct, the cumulative hazards should follow a standard exponential distri-
bution. See Cox and Oakes (1984).

Function SURVIVAL_GLM computes estimates of survival probabilities and
hazard rates for the parametric survival/reliability models when using the Est_*
keywords.

Let η = xTβ be the linear parameterization, where x is the design vector corre-
sponding to a row of x (SURVIVAL_GLM generates the design vector using

$β

′ ′−I H Ii
T

i� � 1

SURVIVAL_GLM Function 465

function REGRESSORS), and β is a vector of parameters associated with the
linear model. Let T denote the random response variable and S(t) denote the
probability that T > t. All models considered also allow a fixed parameter w
(input in column Ifix of x). Use of the keyword is discussed in above. There
also may be nuisance parameters θ > 0 or σ > 0. Let λ(t) denote the hazard rate
at time t. Then λ(t) and S(t) are related at

Models 0, 1, 2, 4, 6, 8, and 10 require that T > 0 (in which case assume
λ(s) = 0 for s < 0), while the remaining models allow arbitrary values for T,
−∞ < T < ∞. The computations proceed in function SURVIVAL_GLM when
using the keywords Est_* as follows:

1. The input arguments are checked for consistency and validity.

2. For each row of x, the explanatory variables are generated from the classifi-
cation and variables and the covariates using function REGRESSORS with
keyword Dummy_Method.

3. For each point requested in the time grid, the survival probabilities and haz-
ard rates are computed.

Programming Notes

Indicator (dummy) variables are created for the classification variables using
function REGRESSORS (Chapter 2, Regression) using keyword
Dummy_Method.

Example 1

This example is taken from Lawless (1982, p. 287) and involves the mortality
of patients suffering from lung cancer. An exponential distribution is fit for the
model

η = µ + αi + γk + β6x3 + β7x4 + β8x5

where αi is associated with a classification variable with four levels, and γk is
associated with a classification variable with two levels. Note that because the
computations are performed in single precision, there will be some small varia-
tion in the estimated coefficients across different machine environments.

PRO print_results, cs

S t s dst� � � �= �−∞exp()λ

466 Chapter 10: Survival Analysis PV-WAVE:IMSL Statistics Reference

 PRINT, " Coefficient Satistics"

 PRINT, " Coefficient s.e z
p"

 PM, cs, Format = "(4F14.4)"

END

x = TRANSPOSE([$

 [1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0] , $

 [1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0] , $

 [1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0] , $

 [1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0] , $

 [1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0] , $

 [1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0] , $

 [1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0] , $

 [2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0] , $

 [2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0] , $

 [2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0] , $

 [2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0] , $

 [2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0] , $

 [2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0] , $

 [2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0] , $

 [3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0] , $

 [3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0] , $

 [4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0] , $

 [4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0] , $

 [4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0] , $

 [4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0] , $

 [4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0] , $

 [1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0] , $

 [1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0] , $

 [1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0] , $

 [1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0] , $

 [1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0] , $

 [1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0] , $

 [1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0] , $

 [2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0] , $

 [2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0] , $

 [2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0] , $

 [2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0] , $

 [3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0] , $

 [3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0] , $

SURVIVAL_GLM Function 467

 [3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0] , $

 [4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0] , $

 [4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0] , $

 [4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0] , $

 [4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0] , $

 [4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0]])

n_class = 2

n_continuous = 3

model = 0

icen = 6

irt = 5

lp_max = 40

n_coef = SURVIVAL_GLM(n_class, n_continuous, model, x, $

 Icen = icen, Irt = irt, $

 Lp_Max = lp_max, Coef_Stat = cs)

print_results, cs

 Coefficient Satistics

 Coefficient s.e z p

 -1.1027 1.3091 -0.8423 0.3998

 -0.3626 0.4446 -0.8156 0.4149

 0.1271 0.4863 0.2613 0.7939

 0.8690 0.5861 1.4825 0.1385

 0.2697 0.3882 0.6948 0.4873

 -0.5400 0.1081 -4.9946 0.0000

 -0.0090 0.0197 -0.4594 0.6460

 -0.0034 0.0117 -0.2912 0.7710

Example 2

This example is the same as Example 1, but more optional arguments are dem-
onstrated.

PRO print_results, cs, iter, crit, nmiss

 PRINT, " Coefficient Satistics"

 PRINT, " Coefficient s.e z
p"

 PM, cs, Format = "(4F14.4)"

 PRINT

 PRINT, " Iteration Information"

468 Chapter 10: Survival Analysis PV-WAVE:IMSL Statistics Reference

 PRINT, "Method Iteration Step Size Coef Update ", $

 "Log-Likelihood"

 PM, iter, Format = "(I3, I10, 2F14.4, F14.1)"

 PRINT

 PRINT, "Log-Likelihood =", crit

 PRINT

 PRINT, "Number of Missing Value = ", nmiss,$

 Format = "(A26, I3)"

END

x = TRANSPOSE([$

 [1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0] , $

 [1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0] , $

 [1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0] , $

 [1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0] , $

 [1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0] , $

 [1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0] , $

 [1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0] , $

 [2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0] , $

 [2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0] , $

 [2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0] , $

 [2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0] , $

 [2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0] , $

 [2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0] , $

 [2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0] , $

 [3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0] , $

 [3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0] , $

 [4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0] , $

 [4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0] , $

 [4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0] , $

 [4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0] , $

 [4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0] , $

 [1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0] , $

 [1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0] , $

 [1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0] , $

 [1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0] , $

 [1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0] , $

 [1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0] , $

 [1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0] , $

 [2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0] , $

SURVIVAL_GLM Function 469

 [2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0] , $

 [2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0] , $

 [2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0] , $

 [3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0] , $

 [3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0] , $

 [3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0] , $

 [4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0] , $

 [4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0] , $

 [4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0] , $

 [4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0] , $

 [4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0]])

n_class = 2

n_continuous = 3

model = 0

icen = 6

irt = 5

lp_max = 40

n_coef = SURVIVAL_GLM(n_class, n_continuous, model, x, $

 Icen = icen, Irt = irt, Lp_Max = lp_max,
$

 N_Class_Vals = ncv, Class_Vals = cv, $

 Coef_Stat = cs, Criterion = crit, $

 Means = means, Case_Analysis = ca, $

 Iterations = iter, Obs_Status = os, $

 Nmissing = nmiss)

print_results, cs, iter, crit, nmiss

 Coefficient Satistics

 Coefficient s.e z p

 -1.1027 1.3091 -0.8423 0.3998

 -0.3626 0.4446 -0.8156 0.4149

 0.1271 0.4863 0.2613 0.7939

 0.8690 0.5861 1.4825 0.1385

 0.2697 0.3882 0.6948 0.4873

 -0.5400 0.1081 -4.9946 0.0000

 -0.0090 0.0197 -0.4594 0.6460

 -0.0034 0.0117 -0.2912 0.7710

 Iteration Information

Method Iteration Step Size Coef Update Log-Likelihood

470 Chapter 10: Survival Analysis PV-WAVE:IMSL Statistics Reference

 0 0 NaN NaN -224.0

 0 1 1.0000 0.9839 -213.4

 1 2 1.0000 3.6034 -207.3

 1 3 1.0000 10.1238 -204.3

 1 4 1.0000 0.1430 -204.1

 1 5 1.0000 0.0117 -204.1

Log-Likelihood = -204.139

Number of Missing Value = 0

Example 3

In this example, the same data and model as example 1 are used, but Itmax is
set to zero iterations with model coefficients restricted such that µ = −1.25,
β6 = −0.6, and the remaining six coefficients are equal to zero. A chi-squared
statistic, with 8 degrees of freedom for testing the coefficients is specified as
above (versus the alternative that it is not as specified), can be computed, based
on the output, as

where

is output in Covariances. The resulting test statistic, χ2 = 6.107, based upon no
iterations is comparable to likelihood ratio test that can be computed from the
log-likelihood output in this example (−206.683) and the log-likelihood output
in Example 2 (-204.139).

PRO print_results, cs, means, cov, crit, ls

 PRINT, " Coefficient Satistics"

 PRINT, " Coefficient s.e z
p"

 PM, cs, Format = "(4F14.4)"

 PRINT

 PRINT, " Covariate Means"

 PRINT, means, Format = "(7F8.2)"

χ2 1= −g gT
$Σ

$Σ

SURVIVAL_GLM Function 471

 PRINT

 PRINT, " Hessian"

 PM, cov, Format = "(8F8.4)"

 PRINT

 PRINT, "Log-Likelihood =", crit

 PRINT

 PRINT, " Newton_Raphson Step"

 PRINT, ls, Format = "(8F8.4)"

END

x = TRANSPOSE([$

 [1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0] , $

 [1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0] , $

 [1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0] , $

 [1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0] , $

 [1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0] , $

 [1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0] , $

 [1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0] , $

 [2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0] , $

 [2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0] , $

 [2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0] , $

 [2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0] , $

 [2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0] , $

 [2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0] , $

 [2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0] , $

 [3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0] , $

 [3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0] , $

 [4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0] , $

 [4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0] , $

 [4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0] , $

 [4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0] , $

 [4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0] , $

 [1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0] , $

 [1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0] , $

 [1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0] , $

 [1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0] , $

 [1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0] , $

 [1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0] , $

 [1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0] , $

 [2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0] , $

 [2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0] , $

472 Chapter 10: Survival Analysis PV-WAVE:IMSL Statistics Reference

 [2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0] , $

 [2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0] , $

 [3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0] , $

 [3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0] , $

 [3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0] , $

 [4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0] , $

 [4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0] , $

 [4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0] , $

 [4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0] , $

 [4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0]])

n_class = 2

n_continuous = 3

model = 0

icen = 6

irt = 5

lp_max = 40

itmax = 0

init_est = [-1.25, 0.0, 0.0, 0.0, 0.0, -0.6, 0.0, 0.0]

n_coef = SURVIVAL_GLM(n_class, n_continuous, model, x, $

 Icen = icen, Irt = irt, Itmax = it-
max, $

 Lp_Max = lp_max, Init_Est = init_est,
$

 Coef_Stat = cs, Criterion = crit, $

 Covariances = cov, Means = means, $

 Last_Step = ls)

print_results, cs, means, cov, crit, ls

 Coefficient Satistics

 Coefficient s.e z p

 -1.2500 1.3773 -0.9076 0.3643

 0.0000 0.4288 0.0000 1.0000

 0.0000 0.5299 0.0000 1.0000

 0.0000 0.7748 0.0000 1.0000

 0.0000 0.4051 0.0000 1.0000

 -0.6000 0.1118 -5.3652 0.0000

 0.0000 0.0215 0.0000 1.0000

 0.0000 0.0109 0.0000 1.0000

 Covariate Means

SURVIVAL_GLM Function 473

 0.35 0.28 0.12 0.53 5.65 56.58 15.65

 Hessian

 1.8969 -0.0906 -0.1641 -0.1681 0.0778 -0.0818 -0.0235 -0.0012

 -0.0906 0.1839 0.0996 0.1191 0.0358 -0.0005 -0.0008 0.0006

 -0.1641 0.0996 0.2808 0.1264 -0.0226 0.0104 0.0005 -0.0021

 -0.1681 0.1191 0.1264 0.6003 0.0460 0.0193 -0.0016
0.0007

 0.0778 0.0358 -0.0226 0.0460 0.1641 0.0060 -0.0040
0.0017

 -0.0818 -0.0005 0.0104 0.0193 0.0060 0.0125 0.0000
0.0003

 -0.0235 -0.0008 0.0005 -0.0016 -0.0040 0.0000 0.0005 -0.0001

 -0.0012 0.0006 -0.0021 0.0007 0.0017 0.0003 -0.0001 0.0001

Log-Likelihood = -206.683

 Newton_Raphson Step

 0.1706 -0.3365 0.1333 1.2967 0.2985 0.0625 -0.0112 -0.0026

Example 4

This example is a continuation of the first example above. Keywords Est_* are
used in the function SURVIVAL_GLM to compute the parameter estimates.
The example is taken from Lawless (1982, p. 287) and involves the mortality of
patients suffering from lung cancer.

PRO print_results, ep

 PRINT, " Survival and Hazard Estimates"

 PRINT, " Time S1 H1 S2
H2"

 PM, ep, Format = "(F7.2, F10.4, F13.6, F10.4, F13.6)"

END

x = TRANSPOSE([$

 [1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0] , $

 [1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0] , $

 [1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0] , $

 [1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0] , $

 [1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0] , $

474 Chapter 10: Survival Analysis PV-WAVE:IMSL Statistics Reference

 [1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0] , $

 [1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0] , $

 [2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0] , $

 [2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0] , $

 [2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0] , $

 [2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0] , $

 [2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0] , $

 [2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0] , $

 [2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0] , $

 [3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0] , $

 [3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0] , $

 [4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0] , $

 [4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0] , $

 [4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0] , $

 [4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0] , $

 [4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0] , $

 [1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0] , $

 [1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0] , $

 [1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0] , $

 [1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0] , $

 [1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0] , $

 [1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0] , $

 [1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0] , $

 [2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0] , $

 [2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0] , $

 [2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0] , $

 [2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0] , $

 [3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0] , $

 [3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0] , $

 [3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0] , $

 [4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0] , $

 [4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0] , $

 [4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0] , $

 [4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0] , $

 [4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.]])

n_class = 2

n_continuous = 3

model = 0

icen = 6

irt = 5

SURVIVAL_GLM Function 475

lp_max = 40

time = 10.0

npt = 10

delta = 20.0

n_coef = SURVIVAL_GLM(n_class, n_continuous, model, x, $

 Icen=icen, Irt=irt, $

 Lp_Max=lp_max, N_Class_Vals=nvc, $

 Class_Vals=cv, Coef_Stat=cs, $

 Criterion=crit, Means=means, $

 Case_Analysis=ca, Obs_Status=os, $

 Iterations=iter, Est_Nobs=2, $

 Est_Time=time, Est_Npt=npt, $

 Est_Delta=delta, Est_Prob=ep, $

 Est_Xbeta=xb)

print_results, ep

 Survival and Hazard Estimates

 Time S1 H1 S2 H2

 10.00 0.9626 0.003807 0.9370 0.006503

 30.00 0.8921 0.003807 0.8228 0.006503

 50.00 0.8267 0.003807 0.7224 0.006503

 70.00 0.7661 0.003807 0.6343 0.006503

 90.00 0.7099 0.003807 0.5570 0.006503

 110.00 0.6579 0.003807 0.4890 0.006503

 130.00 0.6096 0.003807 0.4294 0.006503

 150.00 0.5649 0.003807 0.3770 0.006503

 170.00 0.5235 0.003807 0.3310 0.006503

 190.00 0.4852 0.003807 0.2907 0.006503

Warning Errors

STAT_CONVERGENCE_ASSUMED_1 — Too many step halvings. Convergence
is assumed.

STAT_CONVERGENCE_ASSUMED_2 — Too many step iterations. Conver-
gence is assumed.

STAT_NO_PREDICTED_1 — “estimates(0)” > 1.0. The expected value for the
log logistic distribution (“model” = 4) does not exist. Predicted values will not
be calculated.

476 Chapter 10: Survival Analysis PV-WAVE:IMSL Statistics Reference

STAT_NO_PREDICTED_2 — “estimates(0)” > 1.0. The expected value for the
log extreme value distribution(“model” = 8) does not exist. Predicted values
will not be calculated.

STAT_NEG_EIGENVALUE — The Hessian has at least one negative eigenval-
ue. An upper bound on the absolute value of the minimum eigenvalue is # cor-
responding to variable index #.

STAT_INVALID_FAILURE_TIME_4 — “x(#)(“Ilt”= #)” = # and “x(#)
(“Irt”= #)” = #. The censoring interval has length 0.0. The censoring code for
this observation is being set to 0.0.

Fatal Error

STAT_MAX_CLASS_TOO_SMALL — The number of distinct values of the
classification variables exceeds “Max_Class” = #.

STAT_TOO_FEW_COEF — Init_Est is specified, and “Init_Est” = #. The model
specified requires # coefficients.

STAT_TOO_FEW_VALID_OBS — “n_observations” = # and “Nmissing” = #.
“n_observations”(”Nmissing” must be greater than or equal to 2 in order to esti-
mate the coefficients.

STAT_SVGLM_1 — For the exponential model (“model” = 0) with “n_effects”
= # and no intercept, “n_coef” has been determined to equal 0. With no coeffi-
cients in the model, processing cannot continue.

STAT_INCREASE_LP_MAX — Too many observations are to be deleted from
the model. Either use a different model or increase the workspace.

STAT_INVALID_DATA_8 — “Class_Vals(#)” = #. The number of distinct
values for each classification variable must be greater than one.

477

CHAPTER

11

Probability Distribution Functions
and Inverses

Contents of Chapter
Normal (Gaussian) distribution
function NORMALCDF Function

Bivariate normal
distribution BINORMALCDF Function

Chi-squared distribution
function ... CHISQCDF Function

F distribution function FCDF Function

Student’s t distribution function TCDF Function

Gamma distribution function GAMMACDF Function

Beta distribution function BETACDF Function

Binomial distribution
function BINOMIALCDF Function

Binomial probability
function BINOMIALPDF Function

Hypergeometric distribution
function HYPERGEOCDF Function

Poisson distribution
function POISSONCDF Function

478 Chapter 11: Probability Distribution Functions PV-WAVE:IMSL Statistics Reference

NORMALCDF Function
Evaluates the standard normal (Gaussian) distribution function. Using a key-
word, the inverse of the standard normal (Gaussian) distribution can be
evaluated.

Usage

result = NORMALCDF(x)

Input Parameters

x — Expression for which the normal distribution function is to be evaluated.

Returned Value

result — The probability that a normal random variable takes a value less than
or equal to x.

Input Keywords

Double — If present and nonzero, double precision is used.

Inverse — If present and nonzero, evaluates the inverse of the standard normal
(Gaussian) distribution function. If Inverse is specified, then argument x repre-
sents the probability for which the inverse of the normal distribution function is
to be evaluated. In this case, x must be in the open interval (0.0, 1.0).

Discussion

Function NORMALCDF evaluates the distribution function, Φ, of a standard
normal (Gaussian) random variable; that is,

The value of the distribution function at the point x is the probability that the
random variable takes a value less than or equal to x.

The standard normal distribution (for which NORMALCDF is the distribution
function) has mean of zero and variance of 1. The probability that a normal ran-

Φ x()
1

2π
---------- e t– 2 2⁄ td

∞–

x

∫=

NORMALCDF Function 479

dom variable with mean µ and variance σ2 is less than y is given by
NORMALCDF evaluated at (y – µ) / σ.

The function Φ(x) is evaluated by use of the complementary error function,
ERFC. The relationship follows below.

If the keyword Inverse is specified, the NORMALCDF function evaluates the
inverse of the distribution function, Φ, of a standard normal (Gaussian) random
variable; that is,

NORMALCDF (x, /Inverse) = Φ–1 (x) where

The value of the distribution function at the point x is the probability that the
random variable takes a value less than or equal to x. The standard normal dis-
tribution has a mean of zero and a variance of 1.

The NORMALCDF function is evaluated by use of minimax rational-function
approximations for the inverse of the error function. General descriptions of
these approximations are given in Hart et al. (1968) and Strecok (1968). The
rational functions used in NORMALCDF are described by Kinnucan and Kuki
(1968).

Example

Suppose X is a normal random variable with mean 100 and variance 225. This
example finds the probability that X is less than 90 and the probability that X is
between 105 and 110.

x1 = (90-100)/15.

p = NORMALCDF(x1)

PM, p, Title = $

’The probability that X is less than 90 is:’

The probability that X is less than 90

is: 0.252493

x1 = (105 - 100)/15.

x2 = (110 - 100)/15.

p = NORMALCDF(x2) - NORMALCDF(x1)

PM, p, Title = $

Φ x() ERFC x 2.0⁄–() 2.⁄()=

Φ x()
1

2π
---------- e

t
2 2⁄–

td
∞–

x

∫=

480 Chapter 11: Probability Distribution Functions PV-WAVE:IMSL Statistics Reference

’The probability that X is between 105 and ’, $

’110 is:’

The probability that X is between 105 and 110

is: 0.116949

BINORMALCDF Function
Evaluates the bivariate normal distribution function.

Usage

result = BINORMALCDF(x, y, rho)

Input Parameters

x — The x-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

y — The y-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

rho — Correlation coefficient.

Returned Value

result — The probability that a bivariate normal random variable with correla-
tion rho takes a value less than or equal to x and less than or equal to y.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Function BINORMALCDF evaluates the distribution function F of a bivariate
normal distribution with means of zero, variances of 1, and correlation of rho;
that is, ρ = rho and |ρ| < 1.

F x y,() 1

2π 1 ρ2–
------------------------- exp

u2 2ρuv– v2+
2 1 ρ2–()

-----------------------------------–
 u vdd

∞–

y

∫∞–

x

∫=

BINORMALCDF Function 481

To determine the probability that U ≤ u0 and V ≤ v0, where (U, V) is a bivariate
normal random variable with mean µ = (µU, µV) and the following variance-
covariance matrix:

transform (U, V)T to a vector with zero means and unit variances. The input to
BINORMALCDF would be as follows:

, , and

The BINORMALCDF function uses the method of Owen (1962, 1965). For
|ρ| = 1, the distribution function is computed based on the univariate statistic
Z = min(x, y) and on the normal distribution NORMALCDF.

Example

Suppose (x, y) is a bivariate normal random variable with mean (0, 0) and the
following variance-covariance matrix:

This example finds the probability that x is less than –2.0 and y is less than 0.0.

x = -2

y = 0

rho = .9

; Define x, y, and rho.

p = BINORMALCDF(x, y, rho)

; Call BINORMALCDF and output the results.

PM, ’P((x < -2.0) and (y < 0.0)) = ’, p, $

Format = ’(a29, f8.4)’

P((x < -2.0) and (y < 0.0)) = 0.0228

∑ σU
2 σUV

σUV σV
2

=

X
u0 µU–()

σU

----------------------= Y
v0 µV–()

σV

---------------------= ρ
σUV

σUσV()
-----------------=

1.0 0.9

0.9 1.0

482 Chapter 11: Probability Distribution Functions PV-WAVE:IMSL Statistics Reference

CHISQCDF Function
Evaluates the chi-squared distribution or noncentral chi-squared distribution.
Using a keyword the inverse of these distributions can be computed.

Usage

result = CHISQCDF(chisq, df [, delta])

Input Parameters

chisq — Expression for which the chi-squared distribution function is to be
evaluated. If keyword Inverse is specified, the probability for which the inverse
of the noncentral, chi-squared distribution function is to be evaluated, the
parameter chisq must be in the open interval (0.0, 1.0).

df — Number of degrees of freedom of the chi-squared distribution. Argument
df must be greater than or equal to 0.5.

delta — (Optional) The noncentrality parameter. delta must be nonnegative,
and delta + df must be less than or equal to 200,000.

Returned Value

result — The probability that a chi-squared random variable takes a value less
than or equal to chisq.

Input Keywords

Double — If present and nonzero, double precision is used.

Inverse — If present and nonzero, evaluates the inverse of the chi-squared dis-
tribution function. If inverse is specified, then argument chisq represents the
probability for which the inverse of the chi-squared distribution function is to be
evaluated. Parameter chisq must be in the open interval (0.0, 1.0).

CHISQCDF Function 483

Discussion

If Two Input Arguments Are Used

Function CHISQCDF evaluates the distribution function, F, of a chi-squared
random variable with ν = df. Then,

where Γ(·) is the gamma function. The value of the distribution function at the
point x is the probability that the random variable takes a value less than or
equal to x.

For ν > 65, CHISQCDF uses the Wilson-Hilferty approximation (Abramowitz
and Stegun 1964, Equation 26.4.17) to the normal distribution, and NORMAL-
CDF function is used to evaluate the normal distribution function.

For ν ≤ 65, CHISQCDF uses series expansions to evaluate the distribution func-
tion. If x < max(ν / 2, 26), CHISQCDF uses the series 6.5.29 in Abramowitz
and Stegun (1964); otherwise, it uses the asymptotic expansion 6.5.32 in
Abramowitz and Stegun.

If Inverse is specified, the CHISQCDF function evaluates the inverse distribu-
tion function of a chi-squared random variable with ν = df and with probability
p. That is, it determines x, such that

where Γ(·) is the gamma function. The probability that the random variable
takes a value less than or equal to x is p.

For ν < 40, CHISQCDF uses bisection (if ν ≤ 2 or p > 0.98) or regula falsi to
find the expression for which the chi-squared distribution function is equal to p.

For 40 ≤ ν < 100, a modified Wilson-Hilferty approximation (Abramowitz and
Stegun 1964, Equation 26.4.18) to the normal distribution is used. The NOR-
MALCDF function is used to evaluate the inverse of the normal distribution
function. For ν ≥ 100, the ordinary Wilson-Hilferty approximation (Abramow-
itz and Stegun 1964, Equation 26.4.17) is used.

F x() 1

2ν 2⁄ Γ ν 2⁄()
--------------------------- e t 2⁄– tν 2⁄ 1– dt

0

x

∫=

p
1

2ν 2⁄ Γ ν 2⁄()
--------------------------- e t 2⁄– tν 2⁄ 1– dt

0

x

∫=

484 Chapter 11: Probability Distribution Functions PV-WAVE:IMSL Statistics Reference

If Three Input Arguments Are Used

Function CHISQCDF evaluates the distribution function of a noncentral chi-
squared random variable with df degrees of freedom and noncentrality parame-
ter delta, that is, with v = df, λ = delta, and x = chisq,

where Γ(⋅) is the gamma function. This is a series of central chi-squared distri-
bution functions with Poisson weights. The value of the distribution function at
the point x is the probability that the random variable takes a value less than or
equal to x.

The noncentral chi-squared random variable can be defined by the distribution
function above, or alternatively and equivalently, as the sum of squares of inde-
pendent normal random variables. If Yi have independent normal distributions
with means µi and variances equal to one and

then X has a noncentral chi-squared distribution with n degrees of freedom and
noncentrality parameter equal to

With a noncentrality parameter of zero, the noncentral chi-squared distribution
is the same as the chi-squared distribution.

Function CHISQCDF determines the point at which the Poisson weight is great-
est, and then sums forward and backward from that point, terminating when the
additional terms are sufficiently small or when a maximum of 1000 terms have
been accumulated. The recurrence relation 26.4.8 of Abramowitz and Stegun
(1964) is used to speed the evaluation of the central chi-squared distribution
functions.

If Inverse is specified, CHISQCDF evaluates the inverse distribution function of
a noncentral chi-squared random variable with df degrees of freedom and non-
centrality parameter delta; that is, with P = chisq, v = df, and λ = delta, it
determines c0 (= CHISQCDF(chisq, df, delta)), such that

CHISQCDF Function 485

where Γ(⋅) is the gamma function. The probability that the random variable
takes a value less than or equal to c0 is P.

Example

Suppose X is a chi-squared random variable with two degrees of freedom. This
example finds the probability that X is less than 0.15 and the probability that X
is greater than 3.0.

df = 2

chisq = .15

p = CHISQCDF(chisq, df)

PM, p, Title = $

’The probability that chi-squared ’ + $

’with 2 df is less than .15 is:’

The probability that chi-squared with 2 df is

less than .15 is: 0.0722565

df = 2

chisq = 3

p = 1 - CHISQCDF(chisq, df)

PM, p, Title = $

’The probability that chi-squared ’ + $

’with 2 df is greater than 3 is:’

The probability that chi-squared with 2 df

is greater than 3 is: 0.223130

Informational Errors

STAT_ARG_LESS_THAN_ZERO — Input parameter, chisq, is less than zero.

STAT_UNABLE_TO_BRACKET_VALUE — Bounds that enclose p could not be
found. An approximation for CHISQCDF is returned.

STAT_CHI_2_INV_CDF_CONVERGENCE — Value of the inverse chi-squared
could not be found within a specified number of iterations. An approximation
for CHISQCDF is returned.

486 Chapter 11: Probability Distribution Functions PV-WAVE:IMSL Statistics Reference

Alert Errors

STAT_NORMAL_UNDERFLOW — Using the normal distribution for large
degrees of freedom, underflow would have occurred.

FCDF Function 487

FCDF Function
Evaluates the F distribution function. Using a keyword, the inverse of the F dis-
tribution function can be evaluated.

Usage

result = FCDF(f, dfnum, dfden)

Input Parameters

f — Expression for which the F distribution function is to be evaluated.

dfnum — Numerator degrees of freedom. Parameter dfnum must be positive.

dfden — Denominator degrees of freedom. Parameter dfden must be positive.

Returned Value

result — The probability that an F random variable takes a value less than or
equal to the input point f.

Input Keywords

Double — If present and nonzero, double precision is used.

Inverse — If present and nonzero, evaluates the inverse of the F distribution
function. If inverse is specified, argument f represents the probability for which
the inverse of the F distribution function is to be evaluated. In this case, f must
be in the open interval (0.0, 1.0).

Discussion

Function FCDF evaluates the distribution function of a Snedecor’s F random
variable with dfnum and dfden. The function is evaluated by making a transfor-
mation to a beta random variable and then evaluating the incomplete beta
function. If X is an F variate with ν1 and ν2 degrees of freedom and Y = (ν1X) /
(ν2 + ν1X), then Y is a beta variate with parameters p = ν1 / 2 and q = ν2 / 2.
The FCDF function also uses a relationship between F random variables that
can be expressed as follows: FF(f, ν1, ν2) = 1 – FF(1 / f, ν2, ν1), where FF is the
distribution function for an F random variable.

488 Chapter 11: Probability Distribution Functions PV-WAVE:IMSL Statistics Reference

If the keyword Inverse is specified, the FCDF function evaluates the inverse
distribution function of a Snedecor’s F random variable with ν1 = dfnum numer-
ator degrees of freedom and ν2 = dfden denominator degrees of freedom. The
function is evaluated by making a transformation to a beta random variable and
then evaluating the inverse of an incomplete beta function.

Example

This example finds the probability that an F random variable with one numera-
tor and one denominator degree of freedom is greater than 648.

f = 648

p = 1 - FCDF(f, 1, 1)

PM, p, Title = $

’The probability that an F(1,1) ’ + $

’variate is greater than 648 is:’

The probability that an F(1,1) variate is

greater than 648 is: 0.0249959

Fatal Errors

STAT_F_INVERSE_OVERFLOW — Function FCDF is set to machine infinity
since overflow would occur upon modifying the inverse value for the F distri-
bution with the result obtained from the inverse beta distribution.

TCDF Function 489

TCDF Function
Evaluates the Student’s t distribution or noncentral Student’s t distribution.
Using a keyword the inverse of these distributions can be computed.

Usage

result = TCDF(chisq, df [, delta])

Input Parameters

t — Argument for which the Student’s t distribution function is to be evaluated.
If Inverse is specified, argument t represents the probability for which the
inverse of the Student’s t distribution function is to be evaluated. In this case, t
must be in the open interval (0.0, 1.0).

df — Degrees of freedom. Argument df must be greater than or equal to 1.0.

delta — (Optional) The noncentrality parameter.

Returned Value

result — The probability that a Student’s t random variable takes a value less
than or equal to the input t.

Input Keywords

Double — If present and nonzero, double precision is used.

Inverse — If present and nonzero, evaluates the inverse of the Student’s t distri-
bution function. If Inverse is specified, argument t represents the probability for
which the inverse of the Student’s t distribution function is to be evaluated. In
this case, t must be in the open interval (0.0, 1.0).

Discussion

If Two Input Arguments Are Used

Function TCDF evaluates the distribution function of a Student’s t random vari-
able with ν = df degrees of freedom. If t2 ≥ ν, the relationship of a t to an F
random variable (and subsequently, to a beta random variable) is exploited, and
percentage points from a beta distribution are used. Otherwise, the method

490 Chapter 11: Probability Distribution Functions PV-WAVE:IMSL Statistics Reference

described by Hill (1970) is used. If ν is not an integer or if ν is greater than 19,
a Cornish-Fisher expansion is used to evaluate the distribution function. If ν is
less than 20 and |t| is less than 2.0, a trigonometric series (see Abramowitz and
Stegun 1964, Equations 26.7.3 and 26.7.4, with some rearrangement) is used.
For the remaining cases, a series given by Hill (1970) that converges well for
large values of t is used.

If keyword Inverse is specified, the TCDF function evaluates the inverse distri-
bution function of a Student’s t random variable with ν = df degrees of freedom.
If ν equals 1 or 2, the inverse can be obtained in closed form. If ν is between 1
and 2, the relationship of a t to a beta random variable is exploited, and the
inverse of the beta distribution is used to evaluate the inverse. Otherwise, the
algorithm of Hill (1970) is used. For small values of ν greater than 2, Hill’s
algorithm inverts an integrated expansion in 1 / (1 + t2 / ν) of the t density. For
larger values, an asymptotic inverse Cornish-Fisher type expansion about nor-
mal deviates is used.

If Three Input Arguments Are Used

Function TCDF evaluates the distribution function F of a noncentral t random
variable with df degrees of freedom and noncentrality parameter delta; that is,
with v = df, δ = delta , and t0 = t,

where Γ(⋅) is the gamma function. The value of the distribution function at the
point t0 is the probability that the random variable takes a value less than or
equal to t0.

The noncentral t random variable can be defined by the distribution function
above, or alternatively and equivalently, as the ratio of a normal random vari-
able and an independent chi-squared random variable. If w has a normal
distribution with mean δ and variance equal to one, u has an independent chi-
squared distribution with v degrees of freedom, and

then x has a noncentral t distribution with degrees of freedom and noncentrality
parameter δ.

TCDF Function 491

The distribution function of the noncentral t can also be expressed as a double
integral involving a normal density function (see, for example, Owen 1962,
page 108). The function TNDF uses the method of Owen (1962, 1965), which
uses repeated integration by parts on that alternate expression for the distribu-
tion function.

If Inverse is specified TCDF evaluates the inverse distribution function of a
noncentral t random variable with df degrees of freedom and noncentrality
parameter delta; that is, with P = t, v = df, and δ = delta, it determines
t0 (= TCDF(t, df, delta)), such that

where Γ(⋅) is the gamma function. The probability that the random variable
takes a value less than or equal to t0 is P.

Example

This example finds the probability that a t random variable with six degrees of
freedom is greater in absolute value than 2.447. Argument t is symmetric about
zero.

p = 2 * TCDF(-2.447, 6)

PM, ’Pr(|t(6)| > 2.447) = ’, p, $

Format = ’(a21, f7.4)’

Pr(|t(6)| > 2.447) = 0.0500

Informational Errors

STAT_OVERFLOW — Function TCDF is set to machine infinity since overflow
would occur upon modifying the inverse value for the F distribution with the
result obtained from the inverse beta distribution.

492 Chapter 11: Probability Distribution Functions PV-WAVE:IMSL Statistics Reference

GAMMACDF Function
Evaluates the gamma distribution function.

Usage

result = GAMMACDF(x, a)

Input Parameters

x — Argument for which the gamma distribution function is to be evaluated.

a — Shape parameter of the gamma distribution. This parameter must be
positive.

Returned Value

result — The probability that a gamma random variable takes a value less than
or equal to x.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Function GAMMACDF evaluates the distribution function, F, of a gamma ran-
dom variable with shape parameter a; that is,

where Γ(·) is the gamma function. (The gamma function is the integral from 0
to infinity of the same integrand as above.) The value of the distribution func-
tion at the point x is the probability that the random variable takes a value less
than or equal to x.

The gamma distribution is often defined as a two-parameter distribution with a
scale parameter b (which must be positive) or even as a three-parameter distri-

F x()
1

Γ a()
---------- e

t–
t

a 1–
td

0

x

∫=

GAMMACDF Function 493

bution in which the third parameter c is a location parameter. In the most
general case, the probability density function over (c, infinity) is as follows:

If T is such a random variable with parameters a, b, and c, the probability that T
≤ t0 can be obtained from GAMMACDF by setting
x = (t0 – c) / b.

If x is less than a or if x is less than or equal to 1.0, GAMMACDF uses a series
expansion; otherwise, a continued fraction expansion is used. (See Abramowitz
and Stegun, 1964.)

Example

Let X be a gamma random variable with a shape parameter of 4. (In this case, it
has an Erlang distribution, since the shape parameter is an integer.) This exam-
ple finds the probability that X is less than 0.5 and the probability that X is
between 0.5 and 1.0.

a = 4

x = .5

p = GAMMACDF(x, a)

PM, p, Title = $

’The probability that X is less ’ + $

’than .5 is:’

The probability that X is less than .5 is:

0.00175162

x = 1

p = GAMMACDF(x, a) - p

PM, p, Title = $

’The probability that X is ’ + ’between .5 and 1 is:’

The probability that X is between .5 and 1

is: 0.0172365

Informational Errors

STAT_LESS_THAN_ZERO — Input argument, x, is less than zero.

f t()
1

baΓ a()
----------------e t c–() b⁄– x c–()a 1–=

494 Chapter 11: Probability Distribution Functions PV-WAVE:IMSL Statistics Reference

Fatal Errors

STAT_X_AND_A_TOO_LARGE — Function overflows because x and a are too
large.

BETACDF Function 495

BETACDF Function
Evaluates the beta probability distribution function.

Usage

result = BETACDF(x, pin, qin)

Input Paramters

x — Argument for which the beta probability distribution function is to be eval-
uated. If Inverse is specified, argument x represents the probability for which
the inverse of the Beta distribution function is to be evaluated. In this case, x
must be in the open interval (0.0, 1.0).

pin — First beta distribution parameter. Parameter pin must be positive.

qin — Second beta distribution parameter. Parameter qin must be positive.

Returned Value

result — The probability that a beta random variable takes on a value less than
or equal to x.

Input Keywords

Double — If present and nonzero, double precision is used.

Inverse — If present and nonzero, evaluates the inverse of the Beta distribution
function. If Inverse is specified, argument x represents the probability for which
the inverse of the Beta distribution function is to be evaluated. In this case, x
must be in the open interval (0.0, 1.0).

Discussion

Function BETACDF evaluates the distribution function of a beta random vari-
able with parameters pin and qin. This function is sometimes called the
incomplete beta ratio and is denoted by Ix(p, q), where p = pin and q = qin. It is
given by

Ix p q,() Γ p)Γ q)((
Γ p q)+(

------------------------- t
0

x

∫
p 1–

1 t)–(q 1–
dt=

496 Chapter 11: Probability Distribution Functions PV-WAVE:IMSL Statistics Reference

where Γ(·) is the gamma function. The value of the distribution function by
Ix(p, q) is the probability that the random variable takes a value less than or
equal to x.

The integral in the expression above is called the incomplete beta function and
is denoted by βx(p, q). The constant in the expression is the reciprocal of the
beta function (the incomplete function evaluated at 1) and is denoted by βx(p,
q).

If the keyword Inverse is specified, the BETACDF function evaluates the
inverse distribution function of a beta random variable with parameters pin and
qin. With P = x, p = pin and q = qin, it returns x such that

where Γ(·) is the gamma function. The probability that the random variable
takes a value less than or equal to x is P.

The BETCDF function uses the method of Bosten and Battiste (1974).

Example

Suppose X is a beta random variable with parameters 12 and 12 (X has a sym-
metric distribution). This example finds the probability that X is less than 0.6
and the probability that X is between 0.5 and 0.6. (Since X is a symmetric beta
random variable, the probability that it is less than 0.5 is 0.5.)

p = BETACDF(.6, 12, 12)

; Call BETACDF to compute the first probability and output the results.

PM, p, Title = $

’The probability that X is less than ’ + $

’0.6 is:’, Format= ’(f8.4)’

The probability that X is less than 0.6 is:

0.8364

p = p - BETACDF(.5, 12, 12)

; Call BETACDF and use the previously computed
; probability to determine the next probability.

PM, p, Format = ’(f8.4)’, $

title = ’The probability that X ’ + $

’is between 0.5 and 0.6 is:’

The probability that X is between 0.5 and 0.6

is: 0.3364

P
Γ p)Γ q)((
Γ p q)+(

------------------------- t
0

x

∫
p 1–

1 t)–(q 1– dt=

BINOMIALCDF Function 497

BINOMIALCDF Function
Evaluates the binomial distribution function.

Usage

result = BINOMIALCDF(k, n, p)

Input Parameters

k — Argument for which the binomial distribution function is to be evaluated.

n — Number of Bernoulli trials.

p — Probability of success on each trial.

Returned Value

result — The probability that k or fewer successes occur in n independent Ber-
noulli trials, each of which has a probability p of success.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Function BINOMIALCDF evaluates the distribution function of a binomial ran-
dom variable with parameters n and p by summing probabilities of the random
variable taking on the specific values in its range. These probabilities are com-
puted by the following recursive relationship:

To avoid the possibility of underflow, the probabilities are computed forward
from 0 if k is not greater than n times p; otherwise, they are computed back-
ward from n. The smallest positive machine number, ε, is used as the starting
value for summing the probabilities, which are rescaled by (1 – p)nε if forward
computation is performed and by pnε if backward computation is done.

Pr X j=() n 1 j–+()p
j 1 p–()

----------------------------Pr X j 1–=()=

498 Chapter 11: Probability Distribution Functions PV-WAVE:IMSL Statistics Reference

For the special case of p = 0, BINOMIALCDF is set to 1; for the case p = 1,
BINOMIALCDF is set to 1 if k = n and is set to zero otherwise.

Example

Suppose X is a binomial random variable with n = 5 and p = 0.95. This example
finds the probability that X is less than or equal to 3.

p = BINOMIALCDF(3, 5, .95)

PM, ’Pr(x < 3) = ’, p, $

Format = ’(a12, f7.4)’

Pr(x < 3) = 0.0226

Informational Errors

STAT_LESS_THAN_ZERO — Input parameter, k, is less than zero.

STAT_GREATER_THAN_N — Input parameter, k, is greater than the number of
Bernoulli trials, n.

BINOMIALPDF Function
Evaluates the binomial probability function.

Usage

result = BINOMIALPDF (k, n, p)

Input Parameters

k — Argument for which the binomial probability function is to be evaluated.

n — Number of Bernoulli trials.

p — Probability of success on each trial.

Returned Value

result — The probability that a binomial random variable takes a value equal to
k.

BINOMIALPDF Function 499

Discussion

The function BINOMIALPDF evaluates the probability that a binomial random
variable with parameters n and p takes on the value k. It does this by computing
probabilities of the random variable taking on the values in its range less than
(or the values greater than) k. These probabilities are computed by the recur-
sive relationship

To avoid the possibility of underflow, the probabilities are computed forward
from 0, if k is not greater than n times p, and are computed backward from n,
otherwise. The smallest positive machine number, ε, is used as the starting value
for computing the probabilities, which are rescaled by (1 − p)nε if forward
computation is performed and by pnε if backward computation is done.

For the special case of p = 0, BINOMIALPDF returns 0 if k is greater than 0
and to 1 otherwise; and for the case p = 1, BINOMIALPDF returns 0 if k is less
than n and to 1 otherwise.

Example

Suppose X is a binomial random variable with n = 5 and p = 0.95. In this
example, we find the probability that X is equal to 3.

PRINT, BINOMIALPDF(3, 5, .95)

0.0214344

Pr(Pr(X j
n j p

j p
X j= = + −

−
= −)

()

()
)

1

1
1

500 Chapter 11: Probability Distribution Functions PV-WAVE:IMSL Statistics Reference

HYPERGEOCDF Function
Evaluates the hypergeometric distribution function.

Usage

result = HYPERGEOCDF(k, n, m, l)

Input Parameters

k — Parameter for which the hypergeometric distribution function is to be
evaluated.

n — Sample size. Argument n must be greater than or equal to k.

m — Number of defectives in the lot.

l — Lot size. Parameter l must be greater than or equal to n and m.

Returned Value

result — The probability that k or fewer defectives occur in a sample of size n
drawn from a lot of size l that contains m defectives.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Function HYPERGEOCDF evaluates the distribution function of a hypergeo-
metric random variable with parameters n, l, and m. The hypergeometric
random variable X can be thought of as the number of items of a given type in a
random sample of size n that is drawn without replacement from a population
of size l containing m items of this type.

The probability function is

Pr x j=()

m
j

 l m–
n j–

l
n

---------------------------= for j i i 1 … min n m,(), ,+,=

HYPERGEOCDF Function 501

where i = max(0, n – l + m).

If k is greater than or equal to i and less than or equal to min(n, m), BINOMI-
ALCDF sums the terms in this expression for j going from i up to k; otherwise,
0 or 1 is returned, as appropriate. To avoid rounding in the accumulation,
BINOMIALCDF performs the summation differently, depending on whether or
not k is greater than the mode of the distribution, which is the greatest integer in
(m + 1) (n + 1) / (l + 2).

Example

Suppose X is a hypergeometric random variable with n = 100, l = 1000, and
m = 70. In this example, the distribution function is evaluated at 7.

p = HYPERGEOCDF(7, 100, 70, 1000)

PM, ’Pr(x <= 7) = ’, p, $

Format = ’(a13,f7.4)’

Pr(x <= 7) = 0.5995

Informational Errors

STAT_LESS_THAN_ZERO — Input parameter, k, is less than zero.

STAT_K_GREATER_THAN_N — Input parameter, k, is greater than the sam-
ple size.

Fatal Errors

STAT_LOT_SIZE_TOO_SMALL — Lot size must be greater than or equal to n
and m.

502 Chapter 11: Probability Distribution Functions PV-WAVE:IMSL Statistics Reference

POISSONCDF Function
Evaluates the Poisson distribution function.

Usage

result = POISSONCDF(k, theta)

Input Parameters

k — Parameter for which the Poisson distribution function is to be evaluated.

theta — Mean of the Poisson distribution. Parameter theta must be positive.

Returned Value

result — The probability that a Poisson random variable takes a value less than
or equal to k.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Function POISSONCDF evaluates the distribution function of a Poisson random
variable with parameter theta. The mean of the Poisson random variable, theta,
must be positive.

The probability function (with θ = theta) is as follows:

The individual terms are calculated from the tails of the distribution to the mode
of the distribution and summed. The POISSONCDF function uses the recursive
relationship

,

with .

f x() e θ– θx() x!⁄= for x 0 1 2 …, , ,=

f x 1+() f x() θ x 1+()⁄()= for x 0 1 2 … k 1–, , , ,=

f 0() e
θ–=

POISSONCDF Function 503

Example

Suppose X is a Poisson random variable with θ = 10. This example evaluates
the probability that X ≤ 7.

p = POISSONCDF(7, 10)

PM, ’Pr(x <= 7) = ’, p, $

Format = ’(a13,f7.4)’

Pr(x <= 7) = 0.2202

Informational Errors

STAT_LESS_THAN_ZERO — Input parameter, k, is less than zero.

504 Chapter 11: Probability Distribution Functions PV-WAVE:IMSL Statistics Reference

505

CHAPTER

12

Random Number Generation

Contents of Chapter

Random Numbers

Retrieves uniform (0, 1) multiplicative,
congruential pseudorandom-number
generator RANDOMOPT Procedure

Sets or retrieves the current table
used in either the shuffled
or GFSR random
number generator.RANDOM_TABLE Procedure

Generates pseudorandom
numbers.. RANDOM Function

Generates pseudorandom
numbers from a nonhomo-geneous
Poisson proces RANDOM_NPP Function

Generates pseudorandom order statistics
from a uniform (0, 1) distribution,
or optionally from a standard
normal distributionRANDOM_ORDER Function

Generates a pseudorandom
two-way table...................RAND_TABLE_2WAY Function

Generates a pseudorandom orthogonal
matrix or a
correlation matrix RAND_ORTH_MAT Function

506 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Generates a simple pseudorandom
sample from a
finite population..................RANDOM_SAMPLE Function

Generates pseudorandom numbers
from a multivariate distribution
determined from a
given sample.....................RAND_FROM_DATA Function

Sets up table to generate
pseudorandom numbers from
a general continuous
distribution................................ CONT_TABLE Procedure

Generates pseudorandom numbers
from a general continuous
distribution.......................... RAND_GEN_CONT Function

Sets up table to generate
pseudorandom numbers from a general
discrete distribution DISCR_TABLE Function

Generates pseudorandom numbers
from a general discrete distribution
using an alias method or optionally a table
lookup method RAND_GEN_DISCR Function

Stochastic Processes

Generate pseudorandom ARMA
process numbers RANDOM_ARMA Function

Low-discrepancy sequences

Initializes the structure used for
computing a shuffled
Faure sequence FAURE_INIT Function

Generates a shuffled
Faure sequence FAURE_NEXT_PT Function

Introduction

Overview of Random Number Generation

The Random Numbers section describes functions for the generation of random
numbers that are useful for applications in Monte Carlo or simulation studies.
Before using any of the random number generators, the generator must be ini-

Introduction 507

tialized by selecting a seed or starting value. The user can do this by calling the
function RANDOMOPT. If the user does not select a seed, one is generated
using the system clock. A seed needs to be selected only once in a program,
unless two or more separate streams of random numbers are maintained. Utility
functions in this chapter can be used to select the form of the basic generator to
restart simulations and to maintain separate simulation streams.

In the following discussions, the phrases “random numbers,” “random devi-
ates,” “deviates,” and “variates” are used interchangeably. The phrase
“pseudorandom” is sometimes used to emphasize that the numbers generated
are really not “random” since they result from a deterministic process. The use-
fulness of pseudorandom numbers is derived from the similarity, in a statistical
sense, of samples of the pseudorandom numbers to samples of observations
from the specified distributions. In short, while the pseudorandom numbers are
completely deterministic and repeatable, they simulate the realizations of inde-
pendent and identically distributed random variables.

Basic Uniform Generator

The default action of the RANDOM function is the generation of uniform (0,1)
numbers. This function is portable in the sense that, given the same seed, it pro-
duces the same sequence in all computer/compiler environments.

The random number generators in this chapter use either a multiplicative con-
gruential method or a generalized feedback shift register (GFSR) method. The
selection of the type of generator is made by calling the routine RANDOMOPT
(page 510). If no selection is made explicitly, a multiplicative generator (with
multiplier 16807) is used. Whatever distribution is being simulated, uniform
(0, 1) numbers are first generated and then transformed if necessary. These rou-
tines are portable in the sense that, given the same seed and for a given type of
generator, they produce the same sequence in all computer/compiler environ-
ments. There are many other issues that must be considered in developing
programs for the methods described below (see Gentle 1981 and 1990).

The Multiplicative Congruential Generators

The form of the multiplicative congruential generators is

xi ≡ cxi-1mod (231 − 1)

Each xi is then scaled into the unit interval (0,1). If the multiplier, c, is a primi-
tive root modulo 231 − 1 (which is a prime), then the generator will have a

508 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

maximal period of 231 − 2. There are several other considerations, however. See
Knuth (1981) for a good general discussion. The possible values for c in the
generators are 16807, 397204094, and 950706376. The selection is made by the
function RANDOMOPT. The choice of 16807 will result in the fastest execu-
tion time, but other evidence suggests that the performance of 950706376 is
best among these three choices (Fishman and Moore 1982). If no selection is
made explicitly, the functions use the multiplier 16807, which has been in use
for some time (Lewis et al. 1969).

Shuffled Generators

The user also can select a shuffled version of these generators using
RANDOMOPT. The shuffled generators use a scheme due to Learmonth and
Lewis (1973). In this scheme, a table is filled with the first 128 uniform (0,1)
numbers resulting from the simple multiplicative congruential generator. Then,
for each xi from the simple generator, the low-order bits of xi are used to select
a random integer, j, from 1 to 128. The j-th entry in the table is then delivered
as the random number; and xi, after being scaled into the unit interval, is
inserted into the j-th position in the table. This scheme is similar to that of
Bays and Durham (1976), and their analysis is applicable to this scheme as well.

The Generalized Feedback Shift Register Generator

The GFSR generator uses the recursion Xt = Xt-1563 ⊕ Xt-96. This generator,
which is different from earlier GFSR generators, was proposed by Fushimi
(1990), who discusses the theory behind the generator and reports on several
empirical tests of it. Background discussions on this type of generator can be
found in Kennedy and Gentle (1980), pages 150−162.

Setting the Seed

The seed of the generator can be set and retreived using RANDOMOPT. Prior
to invoking any generator in this section, the user can call RANDOMOPT to
initialize the seed, which is an integer variable with a value between 1 and
2147483647. If it is not initialized by RANDOMOPT, a random seed is
obtained from the system clock. Once it is initialized, the seed need not be set
again.

If the user wants to restart a simulation, RANDOMOPT can be used to obtain
the final seed value of one run to be used as the starting value in a subsequent
run. Also, if two simultaneous random number streams are desired in one run,

Introduction 509

RANDOMOPT can be used before and after the invocations of the generators in
each stream.

If a shuffled generator or the GFSR generator is used, in addition to resetting
the seed, the user must also reset some values in a table. For the shuffled gener-
ators, this is done using the routine RANDOM_TABLE. The tables for the
shuffled generators are separate for single and double precision; so, if precisions
are mixed in a program, it is necessary to manage each precision separately for
the shuffled generators.

Distributions Other than the Uniform

The nonuniform generators use a variety of transformation procedures. All of
the transformations used are exact (mathematically). The most straightforward
transformation is the inverse CDF technique, but it is often less efficient than
others involving acceptance/rejection and mixtures. See Kennedy and Gentle
(1980) for discussion of these and other techniques.

Many of the nonuniform generators in this chapter use different algorithms
depending on the values of the parameters of the distributions. This is particu-
larly true of the generators for discrete distributions. Schmeiser (1983) gives an
overview of techniques for generating deviates from discrete distributions.

Although, as noted above, the uniform generators yield the same sequences on
different computers, because of rounding, the nonuniform generators that use
acceptance/rejection may occasionally produce different sequences on different
computer/compiler environments.

Although the generators for nonuniform distributions use fast algorithms, if a
very large number of deviates from a fixed distribution are to be generated, it
might be worthwhile to consider a table sampling method, as implemented in
the routines RAND_GEN_CONT and RAND_GEN_DISCR.

Additional Notes on Usage

The generators for continuous distributions are available in both single and dou-
ble precision versions. This is merely for the convenience of the user; the
double precision versions should not be considered more “accurate,” except
possibly for the multivariate distributions.

510 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

RANDOMOPT Procedure
Uses keywords to set or retrieve the random number seed or to select the form
of the IMSL random number generator.

Usage

RANDOMOPT

Input Parameters

Procedure RANDOMOPT does not have any positional Input Parameters. Key-
words are required for specific actions to be taken.

Input Keywords

Gen_Option — Indicator of the generator. The random-number generator is a
multiplicative, congruential generator with modulus 231 – 1. Keyword
Gen_Option is used to choose the multiplier and to determine whether or not
shuffling is done.

Set — Seed of the random-number generator. The seed must be in the range
(0, 2147483646). If the seed is zero, a value is computed using the system
clock; hence, the results of programs using the PV- WAVE:IMSL Statistics ran-
dom-number generators are different at various times.

Gen_Option Generator

1 multiplier 16807 used (default)

2 multiplier 16807 used with shuffling

3 multiplier 397204094 used

4 multiplier 397204094 used with shuffling

5 multiplier 950706376 used

6 multiplier 950706376 used with shuffling

7 GFSR, with the recursion Xt = Xt-1563 ⊕ Xt-96
is used

RANDOMOPT Procedure 511

Substream_seed — If present and nonzero, then a seed for the congruential
generators that do not do shuffling that will generate random numbers begin-
ning 100,000 numbers farther along will be returned in keyword Get. If
keyword Substream_seed is set, then keyword Get is required.

Output Keywords

Get — Named variable into which the value of the current random-number seed
is stored.

Current_option — Named variable into which the value of the current random-
number generator option is stored.

Discussion

Procedure RANDOMOPT is designed to allow a user to set certain key ele-
ments of the random-number generator functions.

The uniform pseudorandom-number generators use a multiplicative congruen-
tial method, or a generalized feedback shift register. The choice of generator is
determined by keyword Gen_Option. The chapter introduction and the descrip-
tion of function RANDOM may provide some guidance in the choice of the
form of the generator. If no selection is made explicitly, the generators use the
multiplier 16807 without shuffling. This form of the generator has been in use
for some time (Lewis et al. 1969).

Keyword Set is used to initialize the seed used in the PV- WAVE:IMSL Statis-
tics random-number generators. See the chapter introduction for details of the
various gererator options. The seed can be reinitialized to a clock-dependent
value by calling RANDOMOPT with Set set to zero.

A common use of keyword Set is in conjunction with the keyword Get to restart
a simulation. Keyword Get retrieves the current value of the “seed” used in the
random-number generators.

If keyword Substream_seed is set, RANDOMOPT determines another seed,
such that if one of the IMSL multiplicative congruential generators, using no
shuffling, went through 100,000 generations starting with Substream_seed, the
next number in that sequence would be the first number in the sequence that
begins with the returned seed.

Note that Substream_seed works only when a multiplicative congruential gener-
ator without shuffling is used. This means that either the routine RANDOMOPT

512 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

has not been called at all or that it has been last called with Gen_Option having
a value of 1, 3, or 5.

For many of the IMSL generators for nonuniform distributions that do not use
the inverse CDF method, the distance between the sequences generated starting
with Substream_seed and starting with the returned seed may be less than
100,000. This is because the nonuniform generators that use other techniques
may require more than one uniform deviate for each output deviate.

The reason that one may want two seeds that generate sequences a known dis-
tance apart is for blocking Monte Carlo experiments or for running parallel
streams.

Example 1

This example illustrates the statements required to restart a simulation using the
keywords Get and Set. The example shows that restarting the sequence of ran-
dom numbers at the value of the last seed generated is the same as generating
the random numbers all at once.
seed = 123457

nrandom = 5

RANDOMOPT, Set = seed

; Set the seed using the keyword Set.

r1 = RANDOM(nrandom)

PM, r1, Title = ’First Group of Random Numbers’

First Group of Random Numbers

 0.966220

 0.260711

 0.766262

 0.569337

 0.844829

RANDOMOPT, Get = seed

; Get the current value of the seed using the keyword Get.

RANDOMOPT, Set = seed

; Set the seed.

r2 = RANDOM(nrandom)

PM, r2, $

Title = ’Second Group of Random Numbers’

Second Group of Random Numbers

 0.0442665

 0.987184

 0.601350

RANDOMOPT Procedure 513

 0.896375

 0.380854

RANDOMOPT, Set = 123457

; Reset the seed to the original seed.

r3 = RANDOM(2 * nrandom)

PM, r3, Title = ’Both Groups of Random Numbers’

Both Groups of Random Numbers

 0.966220

 0.260711

 0.766262

 0.569337

 0.844829

 0.0442665

 0.987184

 0.601350

 0.896375

 0.380854

Example 2

In this example, RANDOMOPT is used to determine seeds for 4 separate
streams, each 200,000 numbers apart, for a multiplicative congruential generator
without shuffling. (Since RANDOMOPT is not invoked to select a generator,
the multiplier is 16807.) Since the streams are 200,000 numbers apart, each
seed requires two invocations of RANDOMOPT with keyword Substream_seed.
All of the streams are non-overlapping, since the period of the underlying gen-
erator is 2,147,483,646.

RANDOMOPT, GEN_OPTION = 1

is1 = 123457;

RANDOMOPT, Get = itmp, Substream_seed = is1

RANDOMOPT, Get = is2, Substream _seed = itmp

RANDOMOPT, Get = itmp, Substream _seed = is2

RANDOMOPT, Get = is3, Substream _seed = itmp

RANDOMOPT, Get = itmp, Substream _seed = is3

RANDOMOPT, Get = is4, Substream _seed = itmp

PRINT, is1, is2, is3, is4

 123457 2016130173 85016329 979156171

514 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

RANDOM_TABLE Procedure
Sets or retrieves the current table used in either the shuffled or GFSR random
number generator.

Usage
RANDOM_TABLE, table, /Get

RANDOM_TABLE, table, /Set

Input/Output Parameters

table One dimensional array used in the generators. For the shuffled genera-
tors table is length 128. For the GFSR generator table is length 1565. The
argument table is input if the keyword Set is used, and output if the keyword
Get is used.

Input Keywords

Set If present and nonzero, then the specified table is being set.

Get If present and nonzero, then the specified table is being retieved.

Gfsr If present and nonzero, then the specified GFSR table is being set or
retrieved.

Double If present and nonzero, double precision is used. This keyword is
active only when the shuffled table is being set or retrieved.

Discussion

The values in table are initialized by the IMSL random number generators. The
values are all positive except if the user wishes to reinitialize the array, in which
case the first element of the array is input as a nonpositive value. (Usually, one
should avoid reinitializing these arrays, but it might be necessary sometimes in
restarting a simulation.) If the first element of table is set to a nonpositive value
on the call to RANDOM_TABLE with the keyword Set, on the next invocation
of a routine to generate random numbers, the appropriate table will be
reinitialized.

For more details on the shuffled and GFSR generators see the Introduction sec-
tion on page 506 of this chapter.

RANDOM_TABLE Procedure 515

Example

In this example, three separate simulation streams are used, each with a differ-
ent form of the generator. Each stream is stopped and restarted. (Although this
example is obviously an artificial one, there may be reasons for maintaining
separate streams and stopping and restarting them because of the nature of the
usage of the random numbers coming from the separate streams.)

nr = 5

iseed1 = 123457

iseed2 = 123457

iseed7 = 123457

; Begin first stream, iopt = 1 (by default)

RANDOMOPT, Set = iseed1

r = RANDOM(nr)

RANDOMOPT, Get = iseed1

PM, r, Title = ’First stream output’

First stream output

0.966220

0.260711

0.766262

0.569337

0.844829

PRINT, ’output seed ’, iseed1

output seed 1814256879

; Begin second stream, iopt = 2

RANDOMOPT, gen_opt = 2

RANDOMOPT, Set = iseed2

r = RANDOM(nr)

RANDOMOPT, Get = iseed2

RANDOM_TABLE, table, /Get

PM, r, Title = ’Second stream output’

Second stream output

516 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

0.709518

0.186145

0.479442

0.603839

0.379015

PRINT, ’output seed ’, iseed2

output seed 1965912801

; Begin third stream, iopt = 7

RANDOMOPT, gen_opt = 7

RANDOMOPT, Set = iseed7

r = RANDOM(nr)

RANDOMOPT, Get = iseed7

RANDOM_TABLE, itable, /Get, /GFSR

PM, r, Title = ’Third stream output’

Third stream output

0.391352

0.0262676

0.762180

0.0280987

0.899731

PRINT, ’output seed ’, iseed7

output seed 1932158269

; Reinitialize seed and resume first stream

RANDOMOPT, gen_opt = 1

RANDOMOPT, Set = iseed1

r = RANDOM(nr)

RANDOMOPT, Get = iseed1

pm, r, title = ’First stream output’

First stream output

RANDOM_TABLE Procedure 517

0.0442665

0.987184

0.601350

0.896375

0.380854

PRINT, ’output seed ’, iseed1

output seed 817878095

; Reinitialize seed and table for shuffling and

; resume second stream

RANDOMOPT, gen_opt = 2

RANDOMOPT, Set = iseed2

RANDOM_TABLE, table, /Set

r = RANDOM(nr)

RANDOMOPT, Get = iseed2

PM, r, Title = ’Second stream output’

Second stream output

0.255690

0.478770

0.225802

0.345467

0.581051

PRINT, ’output seed ’, iseed2

output seed 2108806573

; Reinitialize seed and table for GFSR and

; resume third stream.

RANDOMOPT, gen_opt = 7

RANDOMOPT, Set = iseed7

RANDOM_TABLE, itable, /Set, /Gfsr

r = RANDOM(nr)

RANDOMOPT, Get = iseed7

PM, r, Title = ’Third stream output’

Third stream output

518 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

0.751854

0.508370

0.906986

0.0910035

0.691663

PRINT, ’output seed ’, iseed7

output seed 1485334679

RANDOM Function
Generates pseudorandom numbers. The default distribution is a uniform (0, 1)
distribution, but many different distributions can be specified through the use of
keywords.

Usage

result = RANDOM(n)

Generally, it is best to first identify the desired distribution from the
“Discussion” section, then refer to the “Input Keywords” section for specific
usage instructions.

Input Parameters

n — Number of random numbers to generate.

Returned Value

result — A one-dimensional array of length n containing the random numbers.
If one of the keywords Sphere, Multinomial, or Mvar_Normal are used, then a
two-dimensional array is returned.

Input Keywords

Double — If present and nonzero, double precision is used.

Parameters — Specifies parameters for the distribution used by RANDOM to
generate numbers. Some distributions require this keyword to execute success-
fully. The type and range of these parameters depends upon which distribution
is specified. See the keyword for the desired distribution or the Discussion sec-
tion for more details.

RANDOM Function 519

Beta — If present and nonzero, the random numbers are generated from a beta
distribution. Requires the Parameters keyword to specify the parameters (p, q)
for the distribution. The parameters p and q must be positive.

Binomial — If present and nonzero, the random numbers are generated from a
binomial distribution. Requires the Parameters keyword to specify the parame-
ters (p, n) for the distribution. The parameter n is the number of Bernoulli trials,
and it must be greater than zero. The parameter p represents the probability of
success on each trial, and it must be between 0.0 and 1.0.

Cauchy — If present and nonzero, the random numbers are generated from a
Cauchy distribution.

Chi_squared — If present and nonzero, the random numbers are generated
from a chi-squared distribution. Requires the Parameters keyword to specify the
parameter Df for the distribution. The parameter Df is the number of degrees of
freedom for the distribution, and it must be positive.

Discrete_unif — If present and nonzero, the random numbers are generated
from a discrete uniform distribution. Requires the Parameters keyword to spec-
ify the parameter k for the distribution. This generates integers in the range
from 1 to k (inclusive) with equal probability. The parameter k must be positive.

Exponential — If present and nonzero, the random numbers are generated from
a standard exponential distribution.

Gamma — If present and nonzero, the random numbers are generated from a
standard Gamma distribution. Requires the Parameters keyword to specify the
parameter a for the distribution. The parameter a is the shape parameter of the
distribution, and it must be positive n.

Geometric — If present and nonzero, the random numbers are generated from a
geometric distribution. Requires the Parameters keyword to specify the parame-
ter P for the distribution. The parameter P must be positive and less than 1.0.

Hypergeometric — If present and nonzero, the random numbers are generated
from a hypergeometric distribution. Requires the Parameters keyword to spec-
ify the parameters (M, N, L) for the distribution. The parameter N represents the
number of items in the sample, M is the number of special items in the popula-
tion, and L is the total number of items in the population. The parameters N
and M must be greater than zero, and L must be greater than both N and M.

Logarithmic — If present and nonzero, the random numbers are generated from
a logarithmic distribution. Requires the Parameters keyword to specify the
parameter a for the distribution. The parameter a must be greater than zero.

520 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Lognormal — If present and nonzero, the random numbers are generated from
a lognormal distribution. Requires the Parameters keyword to specify the
parameters (µ, σ) for the distribution. The parameter µ is the mean of the distri-
bution, while σ represents the standard deviation.

Mix_Exponential — If present and nonzero, the random numbers are gener-
ated from a mixture of two exponential distributions. Requires the Parameters
keyword to specify the parameters (θ1, θ2, p) for the distribution. The parame-
ters θ1 and θ2 are the means for the two distributions; both must be positive,
and θ1 must be greater than θ2. The parameter p is the relative probability of the
θ1 distribution, and it must be non-negative and less than or equal to
θ1/(θ1- θ2).

Neg_binomial — If present and nonzero, the random numbers are generated
from a negative binomial distribution. Requires the Parameters keyword to
specify the parameters (r, p) for the distribution. The parameter r must be
greater than zero. If r is an integer, the generated deviates can be thought of as
the number of failures in a sequence of Bernoulli trials before r successes occur.
The parameter p is the probability of success on each trial. It must be greater
than the machine epsilon, and less than 1.0.

Normal — If present and nonzero, the random numbers are generated from a
standard normal distribution using an inverse CDF method.

Permutation — If present and nonzero, then generate a pseudorandom
permutation.

Poisson — If present and nonzero, the random numbers are generated from a
Poisson distribution. Requires the Parameters keyword to specify the parame-
ter θ for the distribution. The parameter θ represents the mean of the
distribution, and it must be positive.

Sample_indices— If present and nonzero, generate a simple pseudorandom
sample of indices. Requires the Parameters keyword to specify the parameter
npop, the number of items in the population.

Sphere— If present and nonzero, the random numbers are generated on a unit
circle or K-dimensional sphere. Requires the Parameters keyword to specify the
parameter k, the dimension of the circle (k = 2) or of the sphere.

Stable — If present and nonzero, the random numbers are generated from a sta-
ble distribution. Requires the Parameters keyword to specify the parameters A
and bprime for the stable distribution. A is the characteristic exponent of the
stable distribution. A must be positive and less than or equal to 2. bprime is
related to the usual skewness parameter β of the stable distribution.

RANDOM Function 521

Student_t — If present and nonzero, the random numbers are generated from a
Student’s t distribution. Requires the Parameters keyword to specify the param-
eter Df for the distribution. The Df parameter is the number of degrees of
freedom for the distribution, and it must be positive.

Triangular — If present and nonzero, the random numbers are generated from
a triangular distribution.

Uniform — If present and nonzero, the random numbers are generated from a
uniform (0, 1) distribution. The default action of this returns random numbers
from a uniform (0, 1) distribution.

Von_mises — If present and nonzero, the random numbers are generated from a
von Mises distribution. Requires the Parameters keyword to specify the param-
eter c for the function. The parameter c must be greater than one-half the
machine epsilon.

Weibull — If present and nonzero, the random numbers are generated from a
Weibull distribution. Requires the Parameters keyword to specify the parame-
ters (a, b) for the distribution. The parameter a is the shape parameter, and it is
required. The parameter b is the scale parameter, and is optional
(Default: b = 1.0).

Mvar_Normal — If present and nonzero, the random numbers are generated
from a multivariate normal distribution. Keywords Mvar_Normal and
Covariances must be specified to return numbers from a multivariate normal
distribution.

Covariances — Two-dimensional, square matrix containing the variance-covari-
ance matrix. The two-dimensional array returned by RANDOM is of the
following size:

n by N_ELEMENTS(Covariances(*, 0))

Keywords Mvar_Normal and Covariances must be specified to return numbers
from a multivariate normal distribution.

Multinomial — If present and nonzero, the random numbers are generated from
a multinomial distribution. Requires the Parameters keyword to specify the
parameter (ntrials) for the distribution, and the keyword Probabilities to spec-
ify the array containing the probabilities of the possible outcomes. The value if
ntrials is the multinomial parameter indicating the number of independent trials.

Probabilities — Specifies the array containing the probabilities of the possible
outcomes. The elements of P must be positive and must sum to 1.0.

522 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Keywords Multinomial and Probabilities must be specified to return numbers
from a Multinomial distribution.

NOTE The keywords A, Pin, Qin, and Theta are still supported, but are now
deprecated. Please use the Parameters keyword instead.

Discussion

Function RANDOM is designed to return random numbers from any of a num-
ber of different distributions. The determination of which distribution to
generate the random numbers from is based on the presence of a keyword or
groups of keywords. If RANDOM is called without any keywords, then ran-
dom numbers from a uniform (0, 1) distribution are returned.

Uniform (0,1) Distribution

The default action of RANDOM generates pseudorandom numbers from a uni-
form (0, 1) distribution using a multiplicative, congruential method. The form
of the generator follows:

xi ≡ cxi - 1mod (231 – 1)

Each xi is then scaled into the unit interval (0, 1). The possible values for c in
the generators are 16807, 397204094, and 950706376. The selection is made by
using the RANDOMOPT procedure with the Gen_Option keyword. The choice
of 16807 results in the fastest execution time. If no selection is made explicitly,
the functions use the multiplier 16807. See RANDOMOPT on page 510 for
futher discussion of generator options.

The RANDOMOPT procedure called with the Set keyword is used to initialize
the seed of the random-number generator.

The user can select a shuffled version of these generators. In this scheme, a
table is filled with the first 128 uniform (0, 1) numbers resulting from the sim-
ple multiplicative congruential generator. Then, for each xi from the simple
generator, the low-order bits of xi are used to select a random integer, j, from 1
to 128. The j-th entry in the table is then delivered as the random number, and
xi, after being scaled into the unit interval, is inserted into the j-th position in
the table.

The values returned are positive and less than 1.0. Some values returned may be
smaller than the smallest relative spacing; however, it may be the case that
some value, for example r(i), is such that 1.0 – r(i) = 1.0.

RANDOM Function 523

Deviates from the distribution with uniform density over the interval (a, b) can
be obtained by scaling the output. See Example 3 on page 535 for more details.

Normal Distribution

Calling RANDOM with keyword Normal generates pseudorandom numbers
from a standard normal (Gaussian) distribution using an inverse CDF tech-
nique. In this method, a uniform (0,1) random deviate is generated. Then, the
inverse of the normal distribution function is evaluated at that point using the
NORMALCDF function with keyword Inverse.

If the Parameters keyword is specified in addition to Normal, RANDOM gener-
ates pseudorandom numbers using an acceptance/rejection technique due to
Kinderman and Ramage (1976). In this method, the normal density is repre-
sented as a mixture of densities over which a variety of acceptance/rejection
methods due to Marsaglia (1964), Marsaglia and Bray (1964), and Marsaglia et
al. (1964) are applied. This method is faster than the inverse CDF technique.

Deviates from the normal distribution with mean specific mean and standard
deviation can be obtained by scaling the output from RANDOM. See Example
3 on page 535 for more details.

Exponential Distribution

Calling RANDOM with keyword Exponential generates pseudorandom numbers
from a standard exponential distribution. The probability density function is
f(x) = e–x, for x > 0. Function RANDOM uses an antithetic inverse CDF tech-
nique. In other words, a uniform random deviate U is generated, and the inverse
of the exponential cumulative distribution function is evaluated at 1.0 – U to
yield the exponential deviate.

Poisson Distribution

Calling RANDOM with keywords Poisson and Parameters= θ generates pseu-
dorandom numbers from a Poisson distribution with positive mean θ. The
probability function follows:

, for

If θ is less than 15, RANDOM uses an inverse CDF method; otherwise, the
PTPE method of Schmeiser and Kachitvichyanukul (1981) is used. (See also
Schmeiser 1983.) The PTPE method uses a composition of four regions, a trian-
gle, a parallelogram, and two negative exponentials. In each region except the

f x() e θ– θx() x!⁄= x 0 1 2 …, , ,=

524 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

triangle, acceptance/rejection is used. The execution time of the method is
essentially insensitive to the mean of the Poisson.

Gamma Distribution

Calling RANDOM with keywords Gamma and Parameters=a generates pseudo-
random numbers from a Gamma distribution with shape parameter a and unit
scale parameter. The probability density function follows:

Various computational algorithms are used depending on the value of the shape
parameter a. For the special case of a = 0.5, squared and halved normal devi-
ates are used; for the special case of a = 1.0, exponential deviates are generated.
Otherwise, if a is less than 1.0, an acceptance-rejection method due to Ahrens,
described in Ahrens and Dieter (1974), is used. If a is greater than 1.0, a 10-
region rejection procedure developed by Schmeiser and Lal (1980) is used.

The Erlang distribution is a standard Gamma distribution with the shape param-
eter having a value equal to a positive integer; hence, RANDOM generates
pseudorandom deviates from an Erlang distribution with no modifications
required.

Beta Distribution

Calling RANDOM with keywords Beta, and Parameters=[p,q] generates pseu-
dorandom numbers from a beta distribution. With p and q both positive, the
probability density function is

where Γ(·) is the Gamma function.

The algorithm used depends on the values of p and q. Except for the trivial
cases of p = 1 or q = 1, in which the inverse CDF method is used, all the meth-
ods use acceptance/rejection. If p and q are both less than 1, the method of
Jöhnk (1964) is used. If either p or q is less than 1 and the other is greater than
1, the method of Atkinson (1979) is used. If both p and q are greater than 1,
algorithm BB of Cheng (1978), which requires very little setup time, is used if x
is less than 4, and algorithm B4PE of Schmeiser and Babu (1980) is used if x is
greater than or equal to 4. Note that for p and q both greater than 1, calling

f x()
1

Γ a()
----------xa 1– e x–= for x 0≥

f x()
Γ p q+()
Γ p()Γ q()
---------------------xp 1– 1 x–()q 1–=

RANDOM Function 525

RANDOM to generate random numbers from a beta distribution a loop getting
less than four variates on each call yields the same set of deviates as executing
one call and getting all the deviates at once.

The values returned are less than 1.0 and greater than ε, where ε is the smallest
positive number such that 1.0 – ε is less than 1.0.

Multivariate Normal Distribution

Calling RANDOM with keywords Mvar_Normal and Covariances generates
pseudorandom numbers from a multivariate normal distribution with mean vec-
tor consisting of all zeros and variance-covariance matrix defined using
keyword Covariances. First, the Cholesky factor of the variance-covariance
matrix is computed. Then, independent random normal deviates with mean zero
and variance 1 are generated, and the matrix containing these deviates is post-
multiplied by the Cholesky factor. Because the Cholesky factorization is
performed in each invocation, it is best to generate as many random vectors as
needed at once.

Deviates from a multivariate normal distribution with means other than zero can
be generated by using RANDOM with keywords Mvar_Normal and
Covariances, then adding the vectors of means to each row of the result.

Binomial Distribution

Calling RANDOM with keywords Binomial, Parameters= [p, n] generates
pseudorandom numbers from a binomial distribution with parameters n and p.
Parameters n and p must be positive, and p must less than 1. The probability
function (where n = Binom_n and p = Binom_p) is

for x = 0, 1, 2, …, n.

The algorithm used depends on the values of n and p. If n * p < 10 or p is less
than machine epsilon, the inverse CDF technique is used; otherwise, the BTPE
algorithm of Kachitvichyanukul and Schmeiser (see Kachitvichyanukul 1982) is
used. This is an acceptance /rejection method using a composition of four
regions. (TPE=Triangle, Parallelogram, Exponential, left and right.)

526 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Cauchy Distribution

Calling RANDOM with the keyword Cauchy generates pseudorandom numbers
from a Cauchy distribution. The probability density function is

where T is the median and T − S is the first quartile. This function first gener-
ates standard Cauchy random numbers (T = 0 and S = 1) using the technique
described below, and then scales the values using T and S.

Use of the inverse CDF technique would yield a Cauchy deviate from a uniform
(0, 1) deviate, u, as tan [p (u − 0.5)]. Rather than evaluating a tangent directly,
however, RANDOM generates two uniform (−1, 1) deviates, x1 and x2. These
values can be thought of as sine and cosine values. If

is less than or equal to 1, then x1/x2 is delivered as the unscaled Cauchy deviate;
otherwise, x1 and x2 are rejected and two new uniform (−1, 1) deviates are gen-
erated. This method is also equivalent to taking the ration of two independent
normal deviates.

Chi-squared Distribution

Calling RANDOM with keywords Chi_squared and Parameters=Df generates
pseudorandom numbers from a chi-squared distribution with Df degrees of free-
dom. If Df is an even integer less than 17, the chi-squared deviate r is generated
as

where n = Df /2 and the ui are independent random deviates from a uniform
(0, 1) distribution. If Df is an odd integer less than 17, the chi-squared deviate is
generated in the same way, except the square of a normal deviate is added to
the expression above. If Df is greater than 16 or is not an integer, and if it is not
too large to cause overflow in the gamma random number generator, the chi-
squared deviate is generated as a special case of a gamma deviate.

RANDOM Function 527

Mixed Exponential Distribution

Calling RANDOM with keywords Mix_Exponential, and Parameters= [θ1, θ2]
generates pseudorandom numbers from a mixture of two exponential distribu-
tions. The probability density function is

for x > 0.

In the case of a convex mixture, that is, the case 0 < p < 1, the mixing parame-
ter p is interpretable as a probability; and RANDOM with probability p
generates an exponential deviate with mean θ1, and with probability 1 − p gen-
erates an exponential with mean θ2. When p is greater than 1, but less than
θ1/(θ1 − θ2), then either an exponential deviate with mean θ1 or the sum of two
exponentials with means θ1 and θ2 is generated. The probabilities are
q = p − (p − 1) (θ1/θ2) and 1 − q, respectively, for the single exponential and
the sum of the two exponentials.

Geometric Distribution

Calling RANDOM with keywords Geometric and Parameters=P generates
pseudorandom numbers from a geometric distribution. The parameter P is the
probability of getting a success on any trial. A geometric deviate can be inter-
preted as the number of trials until the first success (including the trial in which
the first success is obtained). The probability function is

f(x) = P(1 − P)x–1

for x = 1, 2, … and 0 < P < 1.

The geometric distribution as defined above has mean 1/P.

The i-th geometric deviate is generated as the smallest integer not less than
(log (Ui))/(log (1 − P)), where the Ui are independent uniform(0, 1) random
numbers (see Knuth 1981).

The geometric distribution is often defined on 0, 1, 2, ..., with mean (1 − P)/P.
Such deviates can be obtained by subtracting 1 from each element of the
returned vector of random deviates.

528 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Hypergeometric Distribution

Calling RANDOM with keywords Hypergeometric, and Parameter=[M, N, L,]
generates pseudorandom numbers from a hypergeometric distribution with
parameters N, M, and L. The hypergeometric random variable X can be thought
of as the number of items of a given type in a random sample of size N that is
drawn without replacement from a population of size L containing M items of
this type. The probability function is

for x = max (0, N − L + M), 1, 2, …, min (N, M)

If the hypergeometric probability function with parameters N, M, and L evalu-
ated at N − L + M (or at 0 if this is negative) is greater than the machine, and
less than 1.0 minus the machine epsilon, then RANDOM uses the inverse CDF
technique. The routine recursively computes the hypergeometric probabilities,
starting at x = max (0, N − L + M) and using the ratio

(see Fishman 1978, p. 475).

If the hypergeometric probability function is too small or too close to 1.0, then
RANDOM generates integer deviates uniformly in the interval [1, L − i] for
i = 0, 1, ..., and at the i-th step, if the generated deviate is less than or equal to
the number of special items remaining in the lot, the occurrence of one special
item is tallied and the number of remaining special items is decreased by one.
This process continues until the sample size of the number of special items in
the lot is reached, whichever comes first. This method can be much slower than
the inverse CDF technique. The timing depends on N. If N is more than half of
L (which in practical examples is rarely the case), the user may wish to modify
the problem, replacing N by L − N, and to consider the generated deviates to be
the number of special items not included in the sample.

Logarithmic Distribution

Calling RANDOM with keywords Logarithmic and Parameter=a generates
pseudorandom numbers from a logarithmic distribution. The probability func-
tion is

RANDOM Function 529

for x = 1, 2, 3, ..., and 0 < a < 1

The methods used are described by Kemp (1981) and depend on the value of a.
If a is less than 0.95, Kemp’s algorithm LS, which is a “chop-down” variant of
an inverse CDF technique, is used. Otherwise, Kemp’s algorithm LK, which
gives special treatment to the highly probable values of 1 and 2 is used.

Lognormal Distribution

Calling RANDOM with keywords Lognormal, and Parameter=[µ, σ] generates
pseudorandom numbers from a lognormal distribution. The scale parameter σ in
the underlying normal distribution must be positive. The method is to generate
normal deviates with mean µ and standard deviation Σ and then to exponentiate
the normal deviates.

The probability density function for the lognormal distribution is

for x > 0. The mean and variance of the lognormal distribution are
exp (µ + σ2/2) and exp (2µ + 2σ2) − exp (2µ + σ2), respectively.

Negative Binomial

Calling RANDOM with keywords Neg_binomial and Parameters=[r, p] gener-
ates pseudorandom numbers from a negative binomial distribution. The
parameters r and p must be positive and p must be less than 1. The probability
function is

for x = 0, 1, 2, ...

If r is an integer, the distribution is often called the Pascal distribution and can
be thought of as modeling the length of a sequence of Bernoulli trials until r
successes are obtained, where p is the probability of getting a success on any

530 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

trial. In this form, the random variable takes values r, r + 1, r + 2, … and can
be obtained from the negative binomial random variable defined above by add-
ing r to the negative binomial variable defined by adding r to the negative
binomial variable. This latter form is also equivalent to the sum of r geometric
random variables defined as taking values 1, 2, 3, ...

If rp/(1 − p) is less than 100 and (1 − p)r is greater than the machine epsilon,
RANDOM uses the inverse CDF technique; otherwise, for each negative bino-
mial deviate, RANDOM generates a gamma (r, p/(1 − p)) deviate Y and then
generates a Poisson deviate with parameter Y.

Discrete Uniform Distribution

Calling RANDOM with keywords Discrete_unif and Parameters=k generates
pseudorandom numbers from a uniform discrete distribution over the integers 1,
2, ..., k. A random integer is generated by multiplying k by a uniform (0, 1) ran-
dom number, adding 1.0, and truncating the result to an integer. This, of course,
is equivalent to sampling with replacement from a finite population of size k.

Student’s t Distribution

Calling RANDOM with keywords Students_t and Parameters=Df generates
pseudorandom numbers from a Student’s t distribution with Df degrees of free-
dom, using a method suggested by Kinderman et al. (1977). The method
(“TMX” in the reference) involves a representation of the t density as the sum
of a triangular density over (−2, 2) and the difference of this and the t density.
The mixing probabilities depend on the degrees of freedom of the t distribu-
tion. If the triangular density is chosen, the variate is generated as the sum of
two uniforms; otherwise, an acceptance/rejection method is used to generate the
difference density.

Triangular Distribution

Calling RANDOM with the keyword Triangular generates pseudorandom num-
bers from a triangular distribution over the unit interval. The probability density
function is f (x) = 4x, for 0 ≤ x ≤ 0.5, and f (x) = 4 (1 − x), for
0.5 < x ≤ 1. An inverse CDF technique is used.

von Mises Distribution

Calling RANDOM with keywords Von_mises and Parameters=c generates
pseudorandom numbers from a von Mises distribution where c must be positive.
The probability density function is

RANDOM Function 531

for −π < x < π, where I0 (c) is the modified Bessel function of the first kind of
order 0. The probability density is equal to 0 outside the interval (−π, π).

The algorithm is an acceptance/rejection method using a wrapped Cauchy distri-
bution as the majorizing distribution. It is due to Nest and Fisher (1979).

Weibull Distribution

Calling RANDOM with keywords Weibull and Parameters=[a,b] generates
pseudorandom numbers from a Weibull distribution with shape parameter a and
scale parameter b. The probability density function is

for x3 0, a > 0, and b > 0. The value of b is optional; if it is not specified, it is
set to 1.0.

Function RANDOM uses an antithetic inverse CDF technique to generate a
Weibull variate; that is, a uniform random deviate U is generated and the
inverse of the Weibull cumulative distribution function is evaluated at 1.0 − U
to yield the Weibull deviate.

Note that the Rayleigh distribution with probability density function

for x ≥ 0 is the same as a Weibull distribution with shape parameter a equal to 2
and scale parameter b equal to

Stable Distribution

Calling RANDOM with keywords Stable and Parameters=[α, β′] generates
pseudorandom numbers from a stable distribution with parameters α‘ and β′. α
is the usual characteristic exponent parameter α and β′ is related to the usual

532 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

skewness parameter β of the stable distribution. With the restrictions 0 < α ≤ 2
and − 1 ≤ β ≤ 1, the characteristic function of the distribution is

ϕ(t) = exp[−| t |a exp(−πiβ(1 − |1 − α|)sign(t)/2)] for α ≠ 1

and

ϕ(t) = exp[−| t |(1 + 2iβ ln| t |)sign(t)/π)] for α = 1

When β = 0, the distribution is symmetric. In this case, if α = 2, the distribution
is normal with mean 0 and variance 2; and if α = 1, the distribution is Cauchy.

The parameterization using β′ and the algorithm used here are due to Chambers,
Mallows, and Stuck (1976). The relationship between β′ and the standard β is

β′ = −tan(π(1 − α)/2) tan(−πβ(1 − |1 − α|)/2) for α ≠ 1

and

β′ = β for α = 1

The algorithm involves formation of the ratio of a uniform and an exponential
random variate.

Multinomial Distribution

Calling RANDOM with keywords Multinomial, Probabilites, and Parame-
ters=ntrials generates pseudorandom numbers from a K-variate multinomial
distribution with parameters n and p. k=N_ELEMENTS(Probabilities) and
ntrials must be positive. Each element of Probabilites must be positive and the
elements must sum to 1. The probability function
(with n = n, k = k, and pi = Probabilities(i)) is

for xi ≥ 0 and

The deviate in each row of r is produced by generation of the binomial deviate
x0 with parameters n and pi and then by successive generations of the condi-

f x x x
n

x x x
p p pk

k

x x
k
xk

1 2
1 2

1 2
1 2, , ,

!

! ! !
K

K

K� � =

x ni
i

k

=

−

∑ =
0

1

RANDOM Function 533

tional binomial deviates xj given x0, x1, …, xj-2 with parameters
n − x0 − x1 − … − xj-2 and pj /(1 − p0 − p1 − … − pj-2).

Random Points on a K-dimensional Sphere

Calling RANDOM with the keywords Sphere and Parameters= k generates
pseudorandom coordinates of points that lie on a unit circle or a unit sphere in
K-dimensional space. For points on a circle (k = 2), pairs of uniform (− 1, 1)
points are generated and accepted only if they fall within the unit circle (the
sum of their squares is less than 1), in which case they are scaled so as to lie on
the circle.

For spheres in three or four dimensions, the algorithms of Marsaglia (1972) are
used. For three dimensions, two independent uniform (− 1, 1) deviates U1 and
U2 are generated and accepted only if the sum of their squares S1 is less than 1.
Then, the coordinates

are formed. For four dimensions, U1, U2, and S1 are produced as described
above. Similarly, U3, U4, and S2 are formed. The coordinates are then

and

For spheres in higher dimensions, K independent normal deviates are generated
and scaled so as to lie on the unit sphere in the manner suggested by Muller
(1959).

Random Permutation

Calling RANDOM with the keyword Permutation generates a pseudorandom
permutation of the integers from 1 to n. It begins by filling a vector of length n
with the consecutive integers 1 to n. Then, with M initially equal to n, a random
index J between 1 and M (inclusive) is generated. The element of the vector
with the index M and the element with index J swap places in the vector. M is
then decremented by 1 and the process repeated until M = 1.

Z U S Z U S Z S1 1 1 2 2 1 3 12 1 2 1 1 2= − = − = −, , and

Z U Z U Z U S S1 1 2 2 3 3 1 21= = = −, , /� �

Z U S S4 4 1 21= −� � /

534 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Sample Indices

Calling RANDOM with the keywords Sample_indices and Parameters=npop
generates the indices of a pseudorandom sample,without replacement, of size n
numbers from a population of size npop. If n is greater than npop/2, the integers
from 1 to npop are selected sequentially with a probability conditional on the
number selected and the number remaining to be considered. If, when the i-th
population index is considered, j items have been included in the sample, then
the index i is included with probability (n − j)/(npop + 1 − i).

If n is not greater than npop/2, a O(n) algorithm due to Ahrens and Dieter
(1985) is used. Of the methods discussed by Ahrens and Dieter, the one called
SG* is used. It involves a preliminary selection of q indices using a geometric
distribution for the distances between each index and the next one. If the pre-
liminary sample size q is less than n, a new preliminary sample is chosen, and
this is continued until a preliminary sample greater in size than n is chosen.
This preliminary sample is then thinned using the same kind of sampling as
described above for the case in which the sample size is greater than half of the
population size. This routine does not store the preliminary sample indices, but
rather restores the state of the generator used in selecting the sample initially,
and then passes through once again, making the final selection as the prelimi-
nary sample indices are being generated.

Example 1

In this example, RANDOM is used to generate five pseudorandom, uniform
numbers. Since RANDOMOPT is not called, the generator used is a simple
multiplicative congruential one with a multiplier of 16807.

RANDOMOPT, Set = 123457

; Set the random seed.

r = RANDOM(5)

; Call RANDOM to compute the random numbers.

PM, r

; Output the results.

0.966220

0.260711

0.766262

0.569337

0.844829

RANDOM Function 535

Example 2: Poisson Distribution

In this example, random numbers from a Poisson distribution are computed.

RANDOMOPT, Set = 123457

r = RANDOM(5, /Poisson, Parameters = 0.5)

; Call RANDOM with keywords Poisson and Theta.

PM, r

 2

 0

 1

 0

 1

Example 3: Beta Distribution

In this example, random numbers are computed from a Beta distribution.

RANDOMOPT, set = 123457

r = RANDOM(5, /Beta, Parameter = [3,2])

; Call RANDOM with keywords Beta, Pin, and Qin.

PM, r

 0.281392

 0.948276

 0.398391

 0.310306

 0.829578

Example 4: Scaling the Results of RANDOM

This example computes deviates with uniform density over the interval (10, 20)
and deviates from the normal distribution with a mean of 10 and a standard
deviation of 2.

RANDOMOPT, Set = 123457

; Set the random number seed.

a = 10

; Define the lowerbound.

b = 20

; Define the upperbound.

r = a + (b - a) * RANDOM(5)

; Call RANDOM to compute the deviates on (0,1) and scale the

536 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

; results to (a,b).

PM, r

; Output the results.

19.6622

12.6071

17.6626

15.6934

18.4483

stdev = 2

; Define a standard deviation.

mean = 10

; Define a mean.

r = RANDOM(6, /Normal) * stdev + mean

; Call RANDOM to compute the deviates normal deviates and scale
; the results using the specified mean and standard deviation.

PM, r

; Output the results.

6.59363

14.4635

10.5137

12.5223

9.39352

5.71021

Example 5: Multivariate Normal Distribution

In this example, RANDOM generates five pseudorandom normal vectors of
length 2 with variance covariance matrix equal to the following:

RANDOMOPT, Set = 123457

; Set the random number seed.

RM, cov, 2, 2

; Read the covariance matrix.

row 0: .5 .375

row 1: .375 .5

PM, RANDOM(5, /Mvar_Normal, Covariances = cov)

0.500 0.375

0.375 0.500

RANDOM_NPP Function 537

1.45068 1.24634

0.765975 -0.0429410

0.0583781 -0.669214

0.903489 0.462826

 -0.866886 -0.933426

RANDOM_NPP Function
Generates pseudorandom numbers from a nonhomogeneous Poisson process.

Usage

result = RANDOM_NPP(tbegin, tend, ftheta, theta_min, theta_max, neub)

Input Parameters

tbegin — Lower endpoint of the time interval of the process.
tbegin must be nonnegative. Usually, tbegin = 0.

tend — Upper endpoint of the time interval of the process.
tend must be greater than tbegin.

ftheta — Scalar string specifying a user-supplied function to provide the value
of the rate of the process as a function of time. This function accepts one argu-
ment and must be defined over the interval from tbegin to tend and must be
nonnegative in that interval.

theta_min — Minimum value of the rate function ftheta() in the interval
(tbegin, tend).
If the actual minimum is unknown, set theta_min = 0.0.

theta_max — Maximum value of the rate function ftheta in the interval (tbe-
gin, tend).
If the actual maximum is unknown, set theta_max to a known upper bound of
the maximum. The efficiency of RANDOM_NPP is less the greater theta_max
exceeds the true maximum.

neub — Upper bound on the number of events to be generated.
In order to be reasonably sure that the full process through time tend is gener-
ated, calculate neub as neub = X + 10.0 * SQRT(X), where X = theta_max *
(tend - tbegin).

538 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Returned Value

A one dimensional array containing the times to events. If then length of the
result is less that neub, the time tend is reached before neub events are realized

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

Routine RANDOM_NPP simulates a one-dimensional nonhomogeneous Pois-
son process with rate function theta in a fixed interval (tend - tbegin].

Let λ(t) be the rate function and t0 = tbegin and t1 = tend. Routine
RANDOM_NPP uses a method of thinning a nonhomogeneous Poisson process
{N*(t), t ≥ t0} with rate function λ*(t) ≥ λ(t) in (t0, t1], where the number of
events, N*, in the interval (t0, t1] has a Poisson distribution with parameter

The function

is called the integrated rate function.In RANDOM_NPP, λ*(t) is taken to be a
constant λ*(= theta_max) so that at time ti, the time of the next event ti + 1 is
obtained by generating and cumulating exponential random numbers

with parameter λ*, until for the first time

where the uj,i are independent uniform random numbers between 0 and 1. This
process is continued until the specified number of events, neub, is realized or

()1

0

t

t
t dtµ = λ∫

Λ t t dt
t� � � �=
′� λ0

* *
1, 2,, , ,i iE E K

()* * *
, 1, , /j i i i j iu t E E≤ + + + λL

RANDOM_NPP Function 539

until the time, tend, is exceeded. This method is due to Lewis and Shedler
(1979), who also review other methods. The most straightforward (and most
efficient) method is by inverting the integrated rate function, but often this is
not possible.

If theta_max is actually greater than the maximum of λ(t) in (t0, t1], the routine
will work, but less efficiently. Also, if λ(t) varies greatly within the interval, the
efficiency is reduced. In that case, it may be desirable to divide the time interval
into subintervals within which the rate function is less variable. This is possible
because the process is without memory.

If no time horizon arises naturally, tend must be set large enough to allow for
the required number of events to be realized. Care must be taken, however, that
ftheta is defined over the entire interval.

After simulating a given number of events, the next event can be generated by
setting tbegin to the time of the last event (the sum of the elements in the result)
and calling RANDOM_NPP again. Cox and Lewis (1966) discuss modeling
applications of nonhomogeneous Poisson processes.

Example

In this example, RANDOM_NPP is used to generate the first five events in the
time 0 to 20 (if that many events are realized) in a nonhomogeneous process
with rate function

λ(t) = 0.6342 e0.001427t

for 0 < t ≤ 20.

Since this is a monotonically increasing function of t, the minimum is at
t = 0 and is 0.6342, and the maximum is at t = 20 and is
0.6342 e0.02854 = 0.652561.

.RUN

- FUNCTION ftheta_npp, t

- return, .6342*exp(.001427*t)

- END

% Compiled module: FTHETA_NPP.

randomopt, set=123457

neub = 5

540 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

tmax = .652561

tmin = .6342

tbegin=0

tend=20

r = RANDOM_NPP(tbegin, tend, ’ftheta_npp’, tmin, tmax, neub)

PM, r

0.0526598

0.407979

0.258399

0.0197666

0.167641

RANDOM_ORDER Function
Generates pseudorandom order statistics from a uniform (0, 1) distribution, or
optionally from a standard normal distribution.

Usage

result = RANDOM_ORDER(ifirst, ilast, n)

Input Parameters

ifirst — First order statistic to generate.

ilast — Last order statistic to generate.
ilast must be greater than or equal to ifirst. The full set of order statistics from
ifirst to ilast is generated. If only one order statistic is desired, set ilast = ifirst.

n — Size of the sample from which the order statistics arise.

Input Keywords

Double — If present and nonzero, double precision is used.

Uniform — If present and nonzero, generate pseudorandom order statistics
from a uniform (0, 1) distribution. (Default)

Normal — If present and nonzero, generate pseudorandom order statistics from
a standard normal distribution.

RANDOM_ORDER Function 541

Returned Value

An array of length ilast + 1 − ifirst containing the random order statistics in
ascending order.

The first element is the ifirst order statistic in a random sample of size n from
the uniform (0, 1) distribution.

Discussion

Routine RANDOM_ORDER generates the ifirst through the ilast order statistics
from a pseudorandom sample of size n from a uniform
(0, 1) distribution. Depending on the values of ifirst and ilast, different meth-
ods of generation are used to achieve greater efficiency. If ifirst = 1 and
ilast = n, that is, if the full set of order statistics are desired, the spacings
between successive order statistics are generated as ratios of exponential vari-
ates. If the full set is not desired, a beta variate is generated for one of the order
statistics, and the others are generated as extreme order statistics from condi-
tional uniform distributions. Extreme order statistics from a uniform distribution
can be obtained by raising a uniform deviate to an appropriate power.

Each call to RANDOM_ORDER yields an independent event. This means, for
example, that if on one call the fourth order statistic is requested and on a sec-
ond call the third order statistic is requested, the “fourth” may be smaller than
the “third”. If both the third and fourth order statistics from a given sample are
desired, they should be obtained from a single call to RANDOM_ORDER (by
specifying ifirst less than or equal to 3 and ilast greater than or equal to 4).

If the keyword Normal is present and nonzero, then RANDOM_ORDER gener-
ates the ifirst through the ilast order statistics from a pseudorandom sample of
size n, from a normal (0, 1) distribution

Example

In this example, RANDOM_ORDER is used to generate the fifteenth through
the nineteenth order statistics from a sample of size twenty.

r = random_order(15, 19, 20)

pm, r

 0.706909

 0.808627

 0.874552

542 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

 0.922146

 0.957402

RAND_TABLE_2WAY Function
Generates a pseudorandom two-way table.

Usage

result = RAND_TABLE_2WAY (row_totals, col_totals)

Input Parameters

row_totals — One dimensional array containing the row totals.

col_totals — One dimensional array containing the column totals. (Input)
The elements of row_totals and col_totals must be nonnegative and must sum
to the same quantity.

Returned Value

A N_ELEMENTS(row_totals) by N_ELEMENTS(col_totals) random matrix
with the given row and column totals.

Discussion

Routine RAND_TABLE_2WAY generates pseudorandom entries for a two-way
contingency table with fixed row and column totals. The method depends on the
size of the table and the total number of entries in the table. If the total number
of entries is less than twice the product of the number of rows and columns, the
method described by Boyette (1979) and by Agresti, Wackerly, and Boyette
(1979) is used. In this method, a work vector is filled with row indices so that
the number of times each index appears equals the given row total. This vector
is then randomly permuted and used to increment the entries in each row so that
the given row total is attained.

For tables with larger numbers of entries, the method of Patefield (1981) is
used. This method can be considerably faster in these cases. The method
depends on the conditional probability distribution of individual elements, given
the entries in the previous rows. The probabilities for the individual elements
are computed starting from their conditional means.

RAND_ORTH_MAT Function 543

Example

In this example, RAND_TABLE_2WAY is used to generate a two by three table
with row totals 3 and 5, and column totals 2, 4, and 2.

r = RAND_TABLE_2WAY([3, 5], [2, 4, 2])

PM, r

 2 1 0

 0 3 2

RAND_ORTH_MAT Function
Generates a pseudorandom orthogonal matrix or a correlation matrix.

Usage

result = RAND_ORTH_MAT(n)

Input Parameters

n — The order of the matrix to be generated.

Returned Value

A two-dimensional array containing the n by n random correlation matrix.

Input Keywords

Double If present and nonzero, double precision is used.

Eigenvalues A one-dimensional array of length n containing the eigenval-
ues of the correlation matrix to be generated. The elements of Eigenvalues
must be positive, they must sum to n, and they cannot all be equal.

A_Matrix A two-dimensional array containing n by n random orthogonal
matrix. A random correlation matrix is generated using the orthogonal matrix
input in A_Matrix. The keyword Eigenvalues must also be supplied if A_Matrix
is used.

544 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Discussion

Routine RAND_ORTH_MAT generates a pseudorandom orthogonal matrix
from the invariant Haar measure. For each column, a random vector from a uni-
form distribution on a hypersphere is selected and then is projected onto the
orthogonal complement of the columns already formed. The method is
described by Heiberger (1978). (See also Tanner and Thisted 1982.)

If the keyword Eigenvalues is used, a correlation matrix is formed by applying
a sequence of planar rotations to the matrix AT DA, where D = diag(Eigenval-
ues(0), …, Eigenvalues(n-1)), so as to yield ones along the diagonal. The
planar rotations are applied in such an order that in the two by two matrix that
determines the rotation, one diagonal element is less than 1.0 and one is greater
than 1.0. This method is discussed by Bendel and Mickey (1978) and by Lin
and Bendel (1985).

The distribution of the correlation matrices produced by this method is not
known. Bendel and Mickey (1978) and Johnson and Welch (1980) discuss the
distribution.

For larger matrices, rounding can become severe; and the double precision
results may differ significantly from single precision results.

Example

In this example, RAND_ORTH_MAT is used to generate a 4 by 4 pseudoran-
dom correlation matrix with eigenvalues in the ratio 1:2:3:4.

RANDOMOPT, set = 123457

a = RAND_ORTH_MAT(4)

ev = .4d0*[1.0d0, 2.0d0, 3.0d0, 4.0d0]

cor = RAND_ORTH_MAT(n, Eigenvalues = ev, A_Matrix= a)

PM, cor

 1.00000 -0.235786 -0.325795 -0.110139

 -0.235786 1.00000 0.190564 -0.0172391

 -0.325795 0.190564 1.00000 -0.435339

 -0.110139 -0.0172391 -0.435339 1.00000

RANDOM_SAMPLE Function 545

RANDOM_SAMPLE Function
Generates a simple pseudorandom sample from a finite population.

Usage

result = RANDOM_SAMPLE(nsamp, population)

Input Parameters

nsamp — The sample size desired.

population A one or two dimensional array containing the population to be
sampled. If either of the keywords First_Call or Additional_Call are specified,
then population contains a different part of the population on each invocation,
otherwise population contains the entire population.

Returned Value

nsamp by nvar array containing the sample, where nvar is the number of col-
umns in the argument population.

Input Keywords

Double If present and nonzero, double precision is used.

First_Call If present and nonzero, then this is the first invocation with this
data; additional calls to RANDOM_SAMPLE may be made to add to the popu-
lation. Additional calls should be made using the keyword Additional_Call.
Keywords Index and Npop are required if First_Call is set. See Example 2 .

Additional_Call If present and nonzero, then this is an additional invocation
of RANDOM_SAMPLE, and updating for the subpopulation in population is
performed. Keywords Index, Npop and Sample are required if Additional_Call
is set. It is not necessary to know the number of items in the population in
advance. Npop is used to cumulate the population size and should not be
changed between calls to RANDOM_SAMPLE. See Example 2.

546 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Input/Output Keywords

Index A one-dimensional array of length nsamp containing the indices of the
sample in the population. Output if keyword First_Call is used. Input/Output if
keyword Additional_Call is used.

Npop The number of items in the population. Output if keyword First_Call
is used. Input/Output if keyword Additional_Call is used.

Sample An array of size nsamp by nvar containing the sample. Initially, the
result of calling RANDOM_SAMPLE with keyword First_Call is used for
Sample.

Discussion

Routine RANDOM_SAMPLE generates a pseudorandom sample from a given
population, without replacement, using an algorithm due to McLeod and Bell-
house (1983).

The first nsamp items in the population are included in the sample. Then, for
each successive item from the population, a random item in the sample is
replaced by that item from the population with probability equal to the sample
size divided by the number of population items that have been encountered at
that time.

Example 1

In this example, RANDOM_SAMPLE is used to generate a sample of size 5
from a population stored in the matrix population.

RANDOMOPT, Set = 123457

pop = STATDATA(2)

samp = RANDOM_SAMPLE(5, pop)

PM, samp

 1764.00 36.4000

 1828.00 62.5000

 1923.00 5.80000

 1773.00 34.8000

 1769.00 106.100

RAND_FROM_DATA Function 547

Example 2

Routine RANDOM_SAMPLE is now used to generate a sample of size 5 from
the same population as in the example above except the data are input to
RANDOM_SAMPLE one observation at a time. This is the way
RANDOM_SAMPLE may be used to sample from a file on disk or tape. Notice
that the number of records need not be known in advance.

RANDOMOPT, Set = 123457

pop = STATDATA(2)

samp = RANDOM_SAMPLE(5, pop(0, *), /First_Call, Index = ii,
Npop=np)

FOR i=1,175 DO samp = RANDOM_SAMPLE(5, pop(i, *), /
Additional_Call, $

 index = ii, npop = np, sample = samp)

PM, samp

 1764.00 36.4000

 1828.00 62.5000

 1923.00 5.80000

 1773.00 34.8000

 1769.00 106.100

RAND_FROM_DATA Function
Generates pseudorandom numbers from a multivariate distribution determined
from a given sample.

Usage

result = RAND_FROM_DATA(n_random, x, nn)

Input Parameters

n_random Number of random multivariate vectors to generate.

x Two dimensional array of size nsamp by ndim containing the given
sample.

nn Number of nearest neighbors of the randomly selected point in x that are
used to form the output point in the result.

548 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Returned Value

n by ndim matrix containing the random multivariate vectors in its rows.

Input Keywords

Double If present and nonzero, double precision is used.

Discussion

Given a sample of size nsamp of observations of a k-variate random variable,
RAND_FROM_DATA generates a pseudorandom sample with approximately
the same moments as the given sample. The sample obtained is essentially the
same as if sampling from a Gaussian kernel estimate of the sample density. (See
Thompson 1989.) Routine RAND_FROM_DATA uses methods described by
Taylor and Thompson (1986).

Assume that the (vector-valued) observations xi are in the rows of x. An obser-
vation, xj, is chosen randomly; its nearest m (= nn) neighbors,

are determined; and the mean

of those nearest neighbors is calculated. Next, a random sample

u1, u2, …, um is generated from a uniform distribution with lower bound

and upper bound

The random variate delivered is

x x xj j jm1 2
, , ,K

 x j

1 3 1
2m

m

m
−

−� �

1 3 1

2m

m

m
+

−� �

CONT_TABLE Procedure 549

The process is then repeated until n such simulated variates are generated and
stored in the rows of the result.

Example

In this example, RAND_FROM_DATA is used to generate 5 pseudorandom
vectors of length 4 using the initial and final systolic pressure and the initial and
final diastolic pressure from Data Set A in Afifi and Azen (1979) as the fixed
sample from the population to be modeled. (Values of these four variables are in
the seventh, tenth, twenty-first, and twenty-fourth columns of data set number
nine in routine STATDATA, see Chapter 13: Utilities of this manual).

RANDOMOPT, Set = 123457
r = STATDATA(9)

x = FLTARR(113, 4)

x(*, 0) = r(*,6)

x(*, 1) = r(*,9)

x(*, 2) = r(*,20)

x(*, 3) = r(*,23)

r = RAND_FROM_DATA(5, x, 5)

PM, r

 162.767 90.5057 153.717 104.877

 153.353 78.3180 176.664 85.2155

 93.6958 48.1675 153.549 71.3688

 101.751 54.1855 113.121 56.2916

 91.7403 58.7684 48.4368 28.0994

CONT_TABLE Procedure
Sets up table to generate pseudorandom numbers from a general continuous
distribution.

Usage

CONT_TABLE, f, iopt, ndata, table

u x x xl jl j
l

m

j− +
=

∑ � �
1

550 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Input Parameters

f A scalar string specifying a user-supplied function to compute the cumula-
tive distribution function. The argument to the function is the point at which the
distribution function is to be evaluated.

iopt Indicator of the extent to which table is initialized prior to calling
CONT_TABLE.

ndata Number of points at which the CDF is evaluated for interpolation.
ndata must be greater than or equal to 4.

Input/Output Parameters

table ndata by 5 table to be used for interpolation of the cumulative distribu-
tion function.
The first column of table contains abscissas of the cumulative distribution func-
tion in ascending order, the second column contains the values of the CDF
(which must be strictly increasing), and the remaining columns contain values
used in interpolation. The first row of table corresponds to the left limit of the
support of the distribution and the last row corresponds to the right limit of the
support; that is, table (0, 1) = 0.0 and table(ndata-1, 1) = 1.0.

iopt Action

0 CONT_TABLE fills the last four columns
of table. The user inputs the points at
which the CDF is to be evaluated in the
first column of table. These must be in
ascending order.

1 CONT_TABLE fills the last three columns
of table. The user supplied function f is not
used and may be a dummy function;
instead, the cumulative distribution func-
tion is specified in the first two columns of
table. The abscissas (in the first column)
must be in ascending order and the func-
tion must be strictly monotonically
increasing.

RAND_GEN_CONT Function 551

Input Keywords

Double If present and nonzero, double precision is used.

Discussion

Routine CONT_TABLE sets up a table that routine RAND_GEN_CONT (page
551) can use to generate pseudorandom deviates from a continuous distribu-
tion. The distribution is specified by its cumulative distribution function, which
can be supplied either in tabular form in table or by a function f. See the docu-
mentation for the routine RAND_GEN_CONT for a description of the method.

Example

For an example of using CONT_TABLE see the example for routine
RAND_GEN_CONT (page 551).

RAND_GEN_CONT Function
Generates pseudorandom numbers from a general continuous distribution.

Usage

result = RAND_GEN_CONT(n, table)

Input Parameters

n Number of random numbers to generate.

table A two-dimensional array setup using CONT_TABLE to be used for
interpolation of the cumulative distribution function.
The first column of table contains abscissas of the cumulative distribution func-
tion in ascending order, the second column contains the values of the CDF
(which must be strictly increasing beginning with 0.0 and ending at 1.0) and the
remaining columns contain values used in interpolation.

Returned Value

An array of length n containing the random deviates.

552 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Input Keywords

Double If present and nonzero, double precision is used.

Discussion

Routine RAND_GEN_CONT generates pseudorandom numbers from a continu-
ous distribution using the inverse CDF technique, by interpolation of points of
the distribution function given in table, which is set up by routine
CONT_TABLE (page 549). A strictly monotone increasing distribution func-
tion is assumed. The interpolation is by an algorithm attributable to Akima
(1970), using piecewise cubics. The use of this technique for generation of ran-
dom numbers is due to Guerra, Tapia, and Thompson (1976), who give a
description of the algorithm and accuracy comparisons between this method and
linear interpolation. The relative errors using the Akima interpolation are gener-
ally considered very good.

Example

In this example, RAND_GEN_CONT (page 551) is used to set up a table for
generation of beta pseudorandom deviates. The CDF for this distribution is
computed by the routine BETACDF (Chapter 11). The table contains 100 points
at which the CDF is evaluated and that are used for interpolation. Notice that
two warnings are issued during the computations for this example.

FUNCTION cdf, x

 return, BETACDF(x, 3., 2.)

END

iopt = 0

ndata = 100;

table = FLTARR(100, 5)

x = 0.0;

table(*,0) = FINDGEN(100)/100.

CONT_TABLE, ’cdf’, iopt, ndata, table

RANDOMOPT, Set = 123457

r = RAND_GEN_CONT(5, table)

DISCR_TABLE Function 553

% BETACDF: Note: STAT_ZERO_AT_X

Since "X" = 0.000000e+00 is less than or equal to zero,

the distribution function is zero at "x".

% CONT_TABLE: Warning: STAT_SECOND_COL_TABLE3

CDF in the second column of table did not begin at 0.0

and end at 1.0, but they have been adjusted. Prior

to adjustment, table(0, 1) = 0.000000e+00 and

table(ndata-1, 1)= 9.994079e-01.

PM, r

 0.92079391

 0.46412855

 0.76678398

 0.65357975

 0.81706959

DISCR_TABLE Function
Sets up table to generate pseudorandom numbers from a general discrete
distribution.

Usage

result = DISCR_TABLE(prf, del, nndx, imin, nmass)

Input Parameters

prf A scalar string specifying a user-supplied function to compute the proba-
bility associated with each mass point of the distribution The argument to the
function is the point at which the probability function is to be evaluated. The
argument to the function can range from imin to the value at which the cumula-
tive probability is greater than or equal to 1.0 − del.

del Maximum absolute error allowed in computing the cumulative probabi
ity.
Probabilities smaller than del are ignored; hence, del should be a small positive
number. If del is too small, however, cumpr (nmass-1) must be exactly 1.0 since
that value is compared to 1.0 − del.

554 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

nndx The number of elements of cumpr available to be used as indexes.
nndx must be greater than or equal to 1. In general, the larger nndx is, to within
sixty or seventy percent of nmass, the more efficient the generation of random
numbers using RAND_GEN_DISCR will be.

Input/Out Parameters

imin Scalar containing the smallest value the random deviate can assume.
By default, prf is evaluated at imin. If this value is less than del, imin is incre-
mented by 1 and again prf is evaluated at imin. This process is continued until
prf(imin) ≥ del. imin is output as this value and result(0) is output as prf(imin).

nmass Scalar containing the number of mass points in the distribution.
Input, if keyword CUM_probs is used; otherwise, output.
By default, nmass is the smallest integer such that
prf(imin + nmass− 1) > 1.0 − del. nmass does include the points iminin + j
for which prf(iminin + j) < del, for j = 0, 1, …,
iminout − iminin, where iminin denotes the input value of imin and iminout
denotes its output value.

Returned Value

Array, cumpr, of length nmass + nndx containing in the first nmass positions,
the cumulative probabilities and in some of the remaining positions, indexes to
speed access to the probabilities.

Input Keywords

Double If present and nonzero, double precision is used.

Cum_Probs One dimensional array of length nmass containing the cumula-
tive probabilities to be used in computing the index portion of the result. If the
keyword Cum_Probs is used, prf is not used and may be a dummy function.

Discussion

Routine DISCR_TABLE sets up a table that routine RAND_GEN_CONT (page
551) uses to generate pseudorandom deviates from a discrete distribution. The
distribution can be specified either by its probability function prf or by a vector
of values of the cumulative probability function. Note that prf is not the cumu-
lative probability distribution function. If the cumulative probabilities are
already available in Cum_Probs, the only reason to call DISCR_TABLE is to

DISCR_TABLE Function 555

form an index vector in the upper portion of the result so as to speed up the
generation of random deviates by the routine RAND_GEN_CONT.

Example 1

In this example, DISCR_TABLE is used to set up a table to generate pseudo-
random variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

In this simple example, we input the cumulative probabilities directly using
keyword Cum_Probs and request 3 indexes to be computed (nndx = 4). Since
the number of mass points is so small, the indexes would not have much effect
on the speed of the generation of the random variates.

function PRF, x

 return, 0

end

cum_probs = [.05, .5, .81, .85, 1]

cumpr = DISCR_TABLE(’PRF’, 0.00001, 4, 1, 5, cum_probs =
cum_probs)

PM, cumpr

 0.0500000

 0.500000

 0.810000

 0.850000

 1.00000

 3.00000

 1.00000

 2.00000

 5.00000

556 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Example 2

This example, DISCR_TABLE is used to set up a table to generate binomial
variates with parameters 20 and 0.5. The routine BINOMIALPDF (Chapter 11,
Probability Distribution and Inverses) is used to compute the probabilities.

FUNCTION PRF, ix

 RETURN, BINOMIALPDF(ix, 20, .5)

END

cumpr = DISCR_TABLE(’PRF’, 0.00001, 12, 0, 21)

PM, cumpr

 1.90735e-05

 0.000200272

 0.00128746

 0.00590802

 0.0206938

 0.0576583

 0.131587

 0.251722

 0.411901

 0.588099

 0.748278

 0.868413

 0.942342

 0.979306

 0.994092

 0.998713

 0.999800

 0.999981

 1.00000

 11.0000

 1.00000

 7.00000

 8.00000

 9.00000

RAND_GEN_DISCR Function 557

 9.00000

 10.0000

 11.0000

 11.0000

 12.0000

 13.0000

 19.0000

RAND_GEN_DISCR Function
Generates pseudorandom numbers from a general discrete distribution using an
alias method or optionally a table lookup method.

Usage

result = RAND_GEN_DISCR(n, imin, nmass, probs)

Input Parameters

n — Number of random numbers to generate.

imin — Smallest value the random deviate can assume.
This is the value corresponding to the probability in probs(0).

nmass — Number of mass points in the discrete distribution.

probs — Array of length nmass containing probabilities associated with the
individual mass points. The elements of probs must be nonnegative and must
sum to 1.0.

If the keyword Table is used, then probs is a vector of length at least nmass + 1
containing in the first nmass positions the cumulative probabilities and, possi-
bly, indexes to speed access to the probabilities.
Routine DISCR_TABLE (page 553) can be used to initialize probs properly. If
no elements of probs are used as indexes, probs (nmass) is 0.0 on input. The
value in probs(0) is the probability of imin. The value in probs (nmass-1) must
be exactly 1.0 (since this is the CDF at the upper range of the distribution.)

Returned Value

An integer array of length n containing the random discrete deviates.

558 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Input Keywords

Double — If present and nonzero, double precision is used.

Table — If present and nonzero, generate pseudorandom numbers from a gen-
eral discrete distribution using a table lookup method. If this keyword is used,
then probs is a vector of length at least nmass + 1 containing in the first nmass
positions the cumulative probabilities and, possibly, indexes to speed access to
the probabilities. Routine DISCR_TABLE (page 553) can be used to initialize
probs properly.

Discussion

Routine RAND_GEN_DISCR generates pseudorandom numbers from a discrete
distribution with probability function given in the vector probs; that is

Pr(X = i) = pj

for i = imin, imin + 1, …, imin + nm − 1 where j = i − imin + 1, pj = probs(j),

imin = imin, and nm = nmass.

The algorithm is the alias method, due to Walker (1974), with modifications
suggested by Kronmal and Peterson (1979).

If the keyword Table is used, RAND_GEN_DISCR generates pseudorandom
deviates from a discrete distribution, using the table probs, which contains the
cumulative probabilities of the distribution and, possibly, indexes to speed the
search of the table. The DISCR_TABLE (page 553) can be used to set up the
table probs. RAND_GEN_DISCR uses the inverse CDF method to generate the
variates.

Example 1

In this example, RAND_GEN_DISCR is used to generate five pseudorandom
variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

RAND_GEN_DISCR Function 559

probs = [.05, .45, .31, .04, .15]

n = 5

imin = 1

nmass = 5

RANDOMOPT, Set_seed = 123457

r = RAND_GEN_DISCR(n, imin, nmass, probs)

PM, r

 3

 2

 2

 3

 5

Example 2

In this example, DISCR_TABLE (page 553) is used to set up a table and then
RAND_GEN_DISCR is used to generate five pseudorandom variates from the
binomial distribution with parameters 20 and 0.5.

FUNCTION PRF, ix

 RETURN, BINOMIALPDF(ix, 20, .5)

END

imin = 0

nmass = 21

RANDOMOPT, Set_seed = 123457

cumpr = DISCR_TABLE(’prf’, 0.00001, 12, imin, nmass)

r = RAND_GEN_DISCR(n, imin, nmass, cumpr, /table)

PM, r

 14

 9

 12

 10

 12

560 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

RANDOM_ARMA Function
Generates a time series from a specific ARMA model.

Usage

result = RANDOM_ARMA(n, nparams)

result = RANDOM_ARMA(n, nparams, ar)

result = RANDOM_ARMA(n, nparams, ma)

result = RANDOM_ARMA(n, nparams, ar, ma)

Input Parameters

n — Number of observations to be generated. Parameter n must be greater than
or equal to one.

nparams — One-dimensional array containing the parameters p and q consecu-
tively. nparams(0) = p, where p is the number of autoregressive parameters. Pa-
rameter p must be greater than or equal to zero. nparams(1) = q, where q is the
number of moving average parameters. Parameter q must be greater than or
equal to zero.

ar — One-dimensional array of length p containing the autoregressive parame-
ters.

ma — One-dimensional array of length q containing the moving average pa-
rameters.

Returned Value

result — One-dimensional array of length n containing the generated time se-
ries.

Input Keywords

Double — If present and nonzero, double precision is used.

Const — Overall constant. See the Discussion section.

Default: Const = 0

Var_Noise — If present (and Input_Noise is not used), the noise at will be gen-
erated from a normal distribution with mean 0 and variance Var_Noise.
Keywords Var_Noise and Input_Noise can not be used together.

RANDOM_ARMA Function 561

Default: Var_Noise = 1.0

Input_Noise — One-dimensional array of length n + max (Ar_Lags(i)) contain-
ing the random noises. Keywords Input_Noise and Var_Noise can not be used
together. Keywords Input_Noise and Output_Noise can not be used together.

Ar_Lags — One-dimensional array of length p containing the order of the non-
zero autoregressive parameters.

Default: Ar_Lags = [1, 2, ..., p]

Ma_Lags — One-dimensional array of length q containing the order of the non-
zero moving average parameters.

Default: Ma_Lags = [1, 2, ..., q]

W_Init — One-dimensional array of length max (Ar_Lags(i)) containing the
initial values of the time series.

Default: W_Init(*) = Const/(1 − ar(0) − ar(1) − …− ar(p − 1))

Accept_Reject — If present and nonzero, the random noises will be generated
from a normal distribution using an acceptance/rejection method. If keyword
Accept_Reject is not used, the random noises will be generated using an in-
verse normal CDF method. This argument will be ignored if keyword
Input_Noise is used.

Output Keywords

Output_Noise — Named variable into which a one-dimensional array of length
n + max (Ma_Lags(i)) containing the random noises is stored.

Discussion

Function RANDOM_ARMA simulates an ARMA(p, q) process, {Wt}, for
t = 1, 2, ..., n. The model is

φ θ θ() ()B W B A t Zt t= + ∈0

φ φ φ φ

θ θ θ θ

B B B B

B B B B

p
p

q
q

� �
� �

= − − − −

= − − − −

1

1

1 2
2

1 2
2

K

K

562 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Let µ be the mean of the time series {Wt}. The overall constant θ0 (Const) is

Time series whose innovations have a nonnormal distribution may be simulated
by providing the appropriate innovations in Input_Noise and start values in
W_Init.

The time series is generated according to the following model:

X(i) = Const + ar(0) * X(i – Ar_Lags(0)) + … +

ar(p – 1) * X(i – Ar_Lags(p – 1)) +

A(I) – ma(0) * A(i – Ma_Lags(0)) − …−

ma(q – 1) * A(i – Ma_Lags(q – 1))

where the constant is related to the mean of the series,

as follows:

and where

X(t) = W(t), t = 0, 1, …, n − 1

and

W(t) = W_Init(t + p), t = –p, –p + 1, …, −2,−1

and A is either Input_Noise (if Input_Noise is used) or Output_Noise (other-
wise).

Example 1

In this example, RANDOM_ARMA is used to generate a time series of length
five, using an ARMA model with three autoregressive parameters and two mov-
ing average parameters. The start values are 0.1000, 0.0500, and 0.0375.

θ
µ

µ φ0
1

0

1 0
=

=

− ∑ >

�
��
	� =

p

pi
p

i
 �

W

Const ar ar= ⋅ − − − −W ()1 0 q 1� � � �K

RANDOM_ARMA Function 563

RANDOMOPT, set = 123457

n = 5

nparams = [3, 2]

ar = [0.5, 0.25, 0.125]

ma = [-0.5, -0.25]

r = RANDOM_ARMA(n, nparams, ar, ma)

PM, r, Format = "(5F10.3)",$

 Title = " ARMA random deviates"

 ARMA random deviates

 0.637 0.317 -0.366 -2.122 -1.407

Example 2

In this example, a time series of length 5 is generated using an ARMA model
with 4 autoregressive parameters and 2 moving average parameters. The start
values are 0.1, 0.05 and 0.0375.

RANDOMOPT, set = 123457

n = 5

nparams = [3, 2]

ar = [0.5, 0.25, 0.125]

ma = [-0.5, -0.25]

wi = [0.1, 0.05, 0.0375]

theta0 = 1

avar = 0.1

r = RANDOM_ARMA(n, nparams, ar, ma, /Accept_Reject, $

 W_Init = wi, Const = theta0, $

 Var_Noise = avar)

PM, r, Format = "(5F10.3)", $

 Title = " ARMA random deviates:"

 ARMA random deviates:

 1.467 1.788 2.459 3.330 3.941

Warning Errors

STAT_RNARM_NEG_VAR — VAR(a) = “Var_Noise” = #, VAR(a) must be
greater than 0. The absolute value of # is used for VAR(a).

564 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

FAURE_INIT Function
Initializes the structure used for computing a shuffled Faure sequence.

Usage

result = FAURE_INIT(ndim)

Input Parameters

ndim The dimension of the hyper-rectangle.

Returned Value

A structure that contains information about the sequence.

Input Keywords

Base The base of the Faure sequence.
Default: The smallest prime greater than or equal to ndim.

Skip The number of points to be skipped at the beginning of the Faure
sequence. Default:

where

and B is the largest representable integer.

Discussion

Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set

/ 2 1m
base

−

log /logB basem =

[]1,..., 0,1 , 1,
d

nx x d∈ ≥

FAURE_INIT Function 565

is

where the supremum is over all subsets of [0, 1]d of the form

λ is the Lebesque measure, and

is the number of the xj contained in E.

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there
exists a constant c(d), depending only on d, such that

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The low-
est bound for the discrepancy is obtained for the smallest prime b≥d, so the
keyword Base defaults to the smallest prime greater than or equal to the
dimension.

The generalized Faure sequence x1, x2, …, is computed as follows:

Write the positive integer n in its b-ary expansion,

where ai (n) are integers,

Dn
d A E n

n
E

E

� � � � � �= -sup
;

,l

))
1

0, 0 0 1, 1 ,... , ,
d jE t t t j d≤ ≤ ≤ ≤= × ×

();E n

Dn
d

c d
n d

n
� � � � � �

�
log

n a n bi
i

i

=

=

�

Ê ()
0

0 � <a n bi � �

/ 2 1m
base

−

566 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

The j-th coordinate of xn is

The generator matrix for the series,

is defined to be

and

is an element of the Pascal matrix,

It is faster to compute a shuffled Faure sequence than to compute the Faure
sequence itself. It can be shown that this shuffling preserves the low-discrep-
ancy property.

The shuffling used is the b-ary Gray code. The function G(n) maps the positive
integer n into the integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized
Faure sequence.

Example

In this example, five points in the Faure sequence are computed. The points are
in the three-dimensional unit cube.

x c a n b j dn
j

kd
j

dk
d

k() () () ,= � �

=

�

=

�

- -ÊÊ
00

1 1

ck d
j()

()j d kc j c
k d k d

−=

k dc

c
d

c d c
k d

k d
k d = -

�

>

�
��
	�

!

! !� �
0

FAURE_NEXT_PT Function 567

Note that FAURE_INIT is used to create a structure that holds the state of the
sequence. Each call to FAURE_NEXT_PT returns the next point in the
sequence and updates the state structure.

state = FAURE_INIT(3)

p = FAURE_NEXT_PT(5, state)

PM, p

 0.333689 0.492659 0.0640654

 0.667022 0.825992 0.397399

 0.778133 0.270436 0.175177

 0.111467 0.603770 0.508510

 0.444800 0.937103 0.841843

FAURE_NEXT_PT Function
Computes a shuffled Faure sequence.

Usage

result = FAURE_NEXT_PT(npts, state)

Input Parameters

npts The number of points to generate in the hyper-rectangle.

state State structure created by a call to FAURE_INIT.

Returned Value

An array of size npts by state.dim containing the npts next points in the shuffled
Faure sequence.

Input Keywords

Double If present and nonzero, double precision is used.

568 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

Output Keywords

Skip The current point in the sequence. The sequence can be restarted by
initializing a new sequence using this value for Skip, and using the same dimen-
sion for ndim.

Discussion

Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set

is

where the supremum is over all subsets of [0, 1]d of the form

λ is the Lebesque measure, and

is the number of the xj contained in E.

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there
exists a constant c(d), depending only on d, such that

for all n>1.

Generalized Faure sequences can be defined for any prime base b≥d. The low-
est bound for the discrepancy is obtained for the smallest prime b≥d, so the
keyword Base defaults to the smallest prime greater than or equal to the
dimension.

[]1,..., 0,1 , 1,
d

nx x d∈ ≥

Dn
d A E n

n
E

E

� � � � � �= -sup
;

,l

))
1

0, 0 0 1, 1 ,... , ,
d jE t t t j d≤ ≤ ≤ ≤= × ×

();E n

Dn
d

c d
n d

n
� � � � � �

�
log

FAURE_NEXT_PT Function 569

The generalized Faure sequence x1, x2, …, is computed as follows:

Write the positive integer n in its b-ary expansion

where ai(n) are integers,

The j-th coordinate of xn is

The generator matrix for the series,

is defined to be

and

is an element of the Pascal matrix,

It is faster to compute a shuffled Faure sequence than to compute the Faure
sequence itself. It can be shown that this shuffling preserves the low-discrep-
ancy property.

n a n bi
i

i

=

=

�

Ê ()
0

0 � <a n bi � �

x c a n b j dn
j

kd
j

dk
d

k() () () ,= � �

=

�

=

�

- -ÊÊ
00

1 1

() ,jc
k d

()j d kc j c
k d k d

−=

k dc

c
d

c d c
k d

k d
k d = -

�

>

�
��
	�

!

! !� �
0

570 Chapter 12: Random Number Generation PV-WAVE:IMSL Statistics Reference

The shuffling used is the b-ary Gray code. The function G(n) maps the positive
integer n into the integer given by its b-ary expansion.

The sequence computed by this function is x(G(n)), where x is the generalized
Faure sequence.

Example

In this example, five points in the Faure sequence are computed. The points are
in the three-dimensional unit cube.

Note that FAURE_INIT is used to create a structure that holds the state of the
sequence. Each call to FAURE_NEXT_PT returns the next point in the
sequence and updates the state structure.

state = FAURE_INIT(3)

p = FAURE_NEXT_PT(5, state)

PM, p

 0.333689 0.492659 0.0640654

 0.667022 0.825992 0.397399

 0.778133 0.270436 0.175177

 0.111467 0.603770 0.508510

 0.444800 0.937103 0.841843

571

CHAPTER

13

Utilities

Contents of Chapter

Constants and Data Sets
Machine constants MACHINE Function

Statistical data sets STATDATA Function

Mathematical Support

Evaluate the binomial
coefficient BINOMIALCOEF Function

Evaluate the complete
beta function .. BETA Function

Evaluate the real incomplete
beta function ... BETAI Function

Evaluate the log of the real
beta function .. LNBETA Function

Evaluate the real gamma
function.. GAMMA_ADV Function

Evaluate the incomplete
gamma function GAMMAI Function

Evaluate the logarithm of
the absolute value of the
gamma function LNGAMMA Function

572 Chapter 13: Utilities PV-WAVE:IMSL Statistics Reference

Error Handling
Informational Error codes
for routines CMAST_ERR_TRANS Function

Sets options for error
recovery CMAST_ERR_STOP Function

Sets options for error
printing CMAST_ERR_PRINT Function

MACHINE Function 573

MACHINE Function
Returns information describing the computer’s arithmetic.

Usage

result = MACHINE()

Returned Value

result — The information describing the computer’s arithmetic is returned in a
structure.

Output Keywords

Float — If present and nonzero, a structure containing the information describ-
ing the single-precision, floating-point arithmetic is returned.

Double — If present and nonzero, a structure containing the information
describing the single-precision, floating-point arithmetic is returned.

Discussion

Function MACHINE returns information describing the computer’s arithmetic.
This can be used to make programs machine independent. The information
returned by MACHINE is in the form of a structure. A different structure is
used for each type: integer, float, and double. Depending on how MACHINE is
called, a different structure is returned.

The default action of MACHINE is to return the structure IMACHINE which
contains integer information on the computer’s arithmetic. By using either the
keywords Float or Double, information about the floating- or double-precision
arithmetic is returned in structures FMACHINE or DMACHINE.

The contents of the these structures are described below.

Integer Information: IMACHINE

Assume that integers are represented in M-digit, base A form as

σ xkAkM

∑

574 Chapter 13: Utilities PV-WAVE:IMSL Statistics Reference

where σ is the sign and 0 ≤ xk < A for k = 0, ..., M. Then, the following table
describes the tags:

Assume that floating-point numbers are represented in N-digit, base B form as

where σ is the sign and 0 ≤ xk < B for k = 1, ..., N for and Emin ≤ E ≤ Emax.

Floating- and Double-precision Information: FMACHINE
and DMACHINE

Information concerning the floating- or double-precision arithmetic of the com-
puter is contained in the structures FMACHINE and
DMACHINE. These structures are returned into named variables by calling

Tag Definition

BITS_PER_CHAR C, bits per character

INTEGER_BASE A, the base

INTEGER_DIGITS Ms, the number of base-A digits in a short int

MAX_INTEGER , the largest short int

LONG_DIGITS Ml, the number of base-A digits in a long int

MAX_LONG , the largest long int

Tag Definition

FLOAT_BASE B, the base

FLOAT_DIGITS Nf, the number of base-B digits in float

FLOAT_MIN_EXP , the smallest float exponent

FLOAT_MAX_EXP , the largest float exponent

DOUBLE_DIGETS Nd, the number of base-B digits in double

DOUBLE_MIN_EXP , the largest long int

DOUBLE_MAX_EXP , the number of base-B digits in double

AMs 1–

AMl 1–

σBE xkB k–N

∑

Eminf

Emaxf

Emind

Emaxd

MACHINE Function 575

MACHINE with the keywords Float for FMACHINE and Double for
DMACHINE.

Assume that float numbers are represented in Nf- digit, base B form as

,

where σ is the sign, 0 ≤ xk < B for k = 1, 2, ..., Nf and

.

Note that if we make the assignment imach = MACHINE(), then B =
imach.FLOAT_BASE, Nf = imach.FLOAT_DIGITS,

,

and

.

The ANSI/IEEE 754-1985 standard for binary arithmetic uses NaN (Not a
Number) as the result of various otherwise illegal operations, such as computing
0/0. If the assignment amach = MACHINE(/Float) is made, then on computers
that do not support NaN, a value larger than amach. MAX_POS is returned in
amach.NAN. On computers that do not have a special representation for infin-
ity, amach.POS_INF contains the same value as amach.MAX_POS.

The structure IMACHINE is defined by the following table:

σBE xkB k–

k 1=

N∑

Emin f
E Emaxf

≤ ≤

Emin f
imach.FLOAT_MIN_EXP=

Emax
f

imach.FLOAT_MAX_EXP=

576 Chapter 13: Utilities PV-WAVE:IMSL Statistics Reference

The structure DMACHINE contains machine constants that define the com-
puter’s double arithmetic. Note that for double, if the assignment imach =
MACHINE() is made, then it

B = imach.FLOAT_BASE, Nf = imach.DOUBLE_DIGITS,

,

and

.

Missing values in PV-WAVE:IMSL Statistics procedures and functions are
often indicated by NaN. There is no missing-value indicator for integers. Users
ususally have to convert from their missing value indicators to NaN.

Example

In this example, all values returned by MACHINE are printed on a machine
with IEEE (Institute for Electrical and Electronics Engineering) arithmetic.

i = machine()

f = machine(/Float)

d = machine(/Double)

; Call INFO with the keyword Structure set to view the contents of the
; structures.

Tag Definition

MIN_POS BEminf –1, the smallest positive number

MAX_POS BEmaxf(1 – B–Nf), the largest number

MIN_REL_SPACE B – Nf, the smallest relative spacing

MAX_REL_SPACE B1– Nf, the largest relative spacing

LOG10_BASE log10(B)

NAN NaN

POS_INF positive machine infinity

NEG_INF negative machine infinity

Emin
f

imach.DOUBLE_MIN_EXP=

Emax f
imach.DOUBLE_MAX_EXP=

MACHINE Function 577

INFO, i, f, d, /Structure

** Structure IMACHINE, 13 tags, length=52:

 BITS_PER_CHAR LONG 8

 INTEGER_BASE LONG 2

 INTEGER_DIGITS LONG 15

 MAX_INTEGER LONG 32767

 LONG_DIGITS LONG 31

 MAX_LONG LONG 2147483647

 FLOAT_BASE LONG 2

 FLOAT_DIGITS LONG 24

 FLOAT_MIN_EXP LONG -125

 FLOAT_MAX_EXP LONG 128

 DOUBLE_DIGITS LONG 53

 DOUBLE_MIN_EXP LONG -1021

 DOUBLE_MAX_EXP LONG 1024

** Structure FMACHINE, 8 tags, length=32:

 MIN_POS FLOAT 1.17549e-38

 MAX_POS FLOAT 3.40282e+38

 MIN_REL_SPACE FLOAT 5.96046e-08

 MAX_REL_SPACE FLOAT 1.19209e-07

 LOG_10 FLOAT 0.301030

 NAN FLOAT NaN

 POS_INF FLOAT Inf

 NEG_INF FLOAT -Inf

** Structure DMACHINE, 8 tags, length=64:

 MIN_POS DOUBLE 2.2250739e-308

 MAX_POS DOUBLE 1.7976931e+308

 MIN_REL_SPACE DOUBLE 1.1102230e-16

 MAX_REL_SPACE DOUBLE 2.2204460e-16

 LOG_10 DOUBLE 0.30102998

 NAN DOUBLE NaN

 POS_INF DOUBLE Infinity

 NEG_INF DOUBLE -Infinity

578 Chapter 13: Utilities PV-WAVE:IMSL Statistics Reference

STATDATA Function
Retrieves commonly analyzed data sets.

Usage

result = STATDATA(choice)

Input Parameters

choice — Data set indicator.

Returned Value

result — An array containing the desired data set is returned.

Input Keyword

Double — If present and nonzero, double precision is used.

CHOICE Numberof Rows Number of Columns Description of Data Set

1 16 7 Longley

2 176 2 Wolfer sunspot

3 150 5 Fisher iris

4 144 1 Box and Jenkins
Series G

5 13 5 Draper and Smith
Appendix B

6 197 1 Box and Jenkins
Series A

7 296 2 Box and Jenkins
Series J

8 100 4 Robinson Multichannel
Time Series

9 113 34 Afifi and Azen
Data Set A

STATDATA Function 579

Discussion

Function STATDATA retrieves a standard data set frequently cited in statistics
text books or in this manual. The following table gives the references for each
data set:

Example

In this example, STATDATA is used to copy the Draper and Smith (1981,
Appendix B) data set into X.

x = STATDATA(5)

PM, x

 7.00000 26.0000 6.00000 60.0000
78.5000

 1.00000 29.0000 15.0000 52.0000
74.3000

 11.0000 56.0000 8.00000 20.0000
104.300

 11.0000 31.0000 8.00000 47.0000
87.6000

 7.00000 52.0000 6.00000 33.0000
95.9000

 11.0000 55.0000 9.00000 22.0000
109.200

 3.00000 71.0000 17.0000 6.00000
102.700

CHOICE References

1 Longley (1967)

2 Anderson (1971, p. 660)

3 Fisher (1936); Mardia et al. (1979, Table
1.2.2)

4 Box and Jenkins (1976, p. 531)

5 Draper and Smith (1981, pp. 629–630)

6 Box and Jenkins (1976, p. 525)

7 Box and Jenkins (1976, pp. 532–533)

8 Robinson (1967, p. 204)

9 Afifi and Azen (1979, pp. 16–22)

580 Chapter 13: Utilities PV-WAVE:IMSL Statistics Reference

 1.00000 31.0000 22.0000 44.0000
72.5000

 2.00000 54.0000 18.0000 22.0000
93.1000

 21.0000 47.0000 4.00000 26.0000
115.900

 1.00000 40.0000 23.0000 34.0000
83.8000

 11.0000 66.0000 9.00000 12.0000
113.300

 10.0000 68.0000 8.00000 12.0000
109.400

BINOMIALCOEF Function
Evaluates the binomial coefficient.

Usage

result = BINOMIALCOEF(n, m)

Input Parameters

n — First parameter of the binomial coefficient. Parameter n must be nonnega-
tive.

m — Second parameter of the binomial coefficient. Parameter m must be non-
negative.

Returned Value

result — The binomial coefficient

is returned.

Input Keywords

Double — If present and nonzero, double precision is used.

n

m

�
�
�
��

BETA Function 581

Discussion

The binomial function is defined to be

with n ≥ m ≥ 0. Also, n must not be so large that the function overflows.

Example

In this example,

is computed and printed.

n = 9

m = 5

ans = BINOMIALCOEF(n, m)

PRINT, "binomial coefficient =", ans

binomial coefficient = 126.000

BETA Function
Evaluates the complete beta function.

Usage

result = BETA(x, y)

Input Parameters

x — First beta parameter. x must be positive.

y — Second beta parameter. y must be positive.

n

m

n

m n m

�
�
�
�� =

−
!

! !� �

5
9
 �

582 Chapter 13: Utilities PV-WAVE:IMSL Statistics Reference

Returned Value

result — The value of the beta function β(x, y). If no result can be computed,
then NaN is returned.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

The beta function, β(x, y), is defined to be

The beta function requires that x > 0 and y > 0. It underflows for large argu-
ments.

Example

Evaluate the beta function β(0.5, 0.2).

x = 0.5

y = 0.2

ans = BETA(x, y)

PRINT, "beta(", x, ",", y, ") =", ans

beta(0.500000, 0.200000) = 6.26865

Alert Errors

STAT_BETA_UNDERFLOW — The arguments must not be so large that the re-
sult underflows.

Fatal Errors

STAT_ZERO_ARG_OVERFLOW — One of the arguments is so close to zero
that the result overflows.

β x y
x y

x y
t t dtx y,� � � � � �

� � � �=
+

= � −− −Γ Γ
Γ

1
0
1 11

BETAI Function 583

BETAI Function
Evaluates the real incomplete beta function Ix = βx (y, z)/β(y, z).

Usage

result = BETAI(x, y, z)

Input Parameters

x — Point at which the incomplete beta function is to be evaluated.

y — Point at which the incomplete beta function is to be evaluated.

z — Point at which the incomplete beta function is to be evaluated.

Returned Value

result — The value of the incomplete beta function.

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

The incomplete beta function is defined to be

The incomplete beta function requires that 0 ≤ x ≤ 1, y > 0, and z > 0. It under-
flows for sufficiently small x and large y. This underflow is not reported as an
error. Instead, the value zero is returned.

Example

Evaluate the log of the incomplete beta function I0.61 =β0.61 (2.2,3.7)/β(2.2,3.7).

x = 0.61

y = 2.2

I y z
y z

y z y b z
t t dtx

x yx z,
,

, ,
� � � �

� � � � � �= = � −− −β
β β

1
11

0
1

584 Chapter 13: Utilities PV-WAVE:IMSL Statistics Reference

z = 3.7

ans = BETAI(x, y, z)

PRINT, "beta incomplete =", ans

beta incomplete = 0.882172

LNBETA Function
Evaluates the logarithm of the real beta function ln β(x, y).

Usage

result = LNBETA(x, y)

Input Parameter

x — Point at which the logarithm of the beta function is to be evaluated.
x must be positive.

y — Point at which the logarithm of the beta function is to be evaluated.
y must be positive.

Returned Value

result — The value of the logarithm of the beta function β(x, y).

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

The beta function, β(x, y), is defined to be

and LNBETA returns ln β(x, y).

The logarithm of the beta function requires that x > 0 and y > 0. It can overflow
for very large arguments.

β x y
x y

x y
t t dtx y,� � � � � �

� � � �=
+

= � −− −Γ Γ
Γ

1
0
1 11

GAMMA_ADV Function 585

Example

Evaluate the log of the beta function ln β(0.5, 0.2).

x = 0.5

y = 0.2

ans = LNBETA(x, y)

PRINT, "log beta(", x, ",", y, ") =", ans

log beta(0.500000, 0.200000) = 1.83556

Warning Errors

STAT_X_IS_TOO_CLOSE_TO_NEG_1 — The result is accurate to less than
one precision because the expression −x/(x + y) is too close to −1.

GAMMA_ADV Function
Evaluates the real gamma function.

Usage

result = GAMMA_ADV(x)

Input Parameters

x — Point at which the gamma function is to be evaluated.

Returned Value

result — The value of the gamma function Γ(x).

Input Keywords

Double — If present and nonzero, double precision is used.

586 Chapter 13: Utilities PV-WAVE:IMSL Statistics Reference

Discussion

The gamma function, Γ(x), is defined to be

For x < 0, the above definition is extended by analytic continuation.

The gamma function is not defined for integers less than or equal to zero. It un-
derflows for x << 0 and overflows for large x. It also overflows for values near
negative integers.

Example

In this example, Γ(1.5) is computed and printed.

x = 1.5

ans = GAMMA_ADV(x)

PRINT, "Gamma(", x, ") =", ans

Gamma(1.50000) = 0.886227

Alert Errors

STAT_SMALL_ARG_UNDERFLOW — The parameter x must be large enough
that Γ(x) does not underflow. The underflow limit occurs first for parameters
close to large negative half integers. Even though other paramters away from
these half integers may yield machine-representable values of Γ(x), such
paramters are considered illegal.

Warning Errors

STAT_NEARR_NEG_INT_WARN — The result is accurate to less than one-half
precision because x is too close to a negative integer.

Fatal Errors

STAT_ZERO_ARG_OVERFLOW — The parameter for the gamma function is
too close to zero.

STAT_NEAR_NEG_INT_FATAL — The parameter for the function is too
close to a negative integer.

STAT_LARGE_ARG_OVERFLOW — The function overflows because x is too

Γ x t e dtx t� � = � − −∞ 1
0

GAMMAI Function 587

large.

STAT_CANNOT_FIND_XMIN — The algorithm used to find xmin failed. This
error should never occur.

STAT_CANNOT_FIND_XMAX — The algorithm used to find xmax failed. This
error should never occur.

GAMMAI Function
Evaluates the incomplete gamma function γ(x, y).

Usage

result = GAMMAI(x, y)

Input Parameters

x — Parameter of the incomplete gamma function is to be evaluated. x must be
positive.

y — Point at which the incomplete gamma function is to be evaluated. y must
be nonnegative.

Returned Value

result — The value of the incomplete gamma function γ(x, y).

Input Keywords

Double — If present and nonzero, double precision is used.

Discussion

The incomplete gamma function, γ(x, y), is defined to be

for y > 0. The incomplete gamma function is defined only for x > 0. Although
γ(x, y) is well defined for y > −∞, this algorithm does not calculate γ(x, y) for
negative y. For large x and sufficiently large y, γ(x, y) may overflow. γ(x, y) is

γ x y t e dtyx t,� � = � − −1
0

588 Chapter 13: Utilities PV-WAVE:IMSL Statistics Reference

bounded by Γ(x), and users may find this bound a useful guide in determining
legal values for x.

Example

Evaluates the incomplete gamma function at x = 1 and y = 3.

x = 1.0

y = 3.0

ans = GAMMAI(x, y)

PRINT, "incomplete gamma(", x, ",", y, ") =", ans

incomplete gamma(1.00000, 3.00000) = 0.950213

Fatal Errors

STAT_NO_CONV_200_TS_TERMS — The function did not converge in 200
terms of Taylor series.

STAT_NO_CONV_200_CF_TERMS — The function did not converge in 200
terms of the continued fraction.

LNGAMMA Function
Evaluates the logarithm of the absolute value of the gamma function log |Γ(x)|.

Usage

result = LNGAMMA(x)

Input Parameters

x — Point at which the logarithm of the absolute value of the gamma function
is to be evaluated.

Returned Value

result — The value of the logarithm of gamma function log |Γ(x)|.

Input Keywords

Double — If present and nonzero, double precision is used.

CMAST_ERR_TRANS Function 589

Discussion

The logarithm of the absolute value of the gamma function log |Γ(x)| is comput-
ed.

Example

In this example, log |Γ(3.5)| is computed and printed.

x = 3.5

ans = LNGAMMA(x)

PRINT, "log gamma(", x, ") =", ans

log gamma(3.50000) = 1.20097

Warning Errors

STAT_NEAR_NEG_INT_WARN — The result is accurate to less than one-half
precision because x is too close to a negative integer.

Fatal Errors

STAT_NEGATIVE_INTEGER — The parameter for the function cannot be a
negative integer.

STAT_NEAR_NEG_INT_FATAL — The parameter for the function is too
close to a negative integer.

STAT_LARGE_ABS_ARG_OVERFLOW — |x| must not be so large that the re-
sult overflows.

CMAST_ERR_TRANS Function
Determines if an Informational Error has occurred.

Usage

result = CMAST_ERR_TRANS(arg)

Output Parameters

arg — Can be either a scalar string specifying a particular Informational Error
or an integer specifying the internal code of an Informational Error.

590 Chapter 13: Utilities PV-WAVE:IMSL Statistics Reference

Returned Value

result — If arg is a scalar string specifying a valid Informational Error, then
the return value is the integer error-code value of the Informational Error. If arg
is an integer specifying a valid Informational Error code, then a string specify-
ing the Informational Error is returned.

Discussion

Function CMAST_ERROR_TRANS is designed to check programs for specific
Informational Errors. PV-WAVE:IMSL Statistics statistical functions attempt to
detect user errors and handle them in a way that provides as much information
to the user as possible. To do this, five levels of Informational Error severity, in
addition to the basic PV-WAVE:IMSL Statistics error-handling facility, are rec-
ognized. Following a call to a mathematical or statistical function, the system
variables !Error and !Cmast_Err contain information concerning the current
error state. Variable !Error contains the error number of the last error, and
!Cmast_Err is set either to zero, which indicates that an Informational Error did
not occur, or to the error code of the last Informational Error that did occur.

The user can interact with the PV-WAVE:IMSL Statistics error-handling sys-
tem with respect to Informational Errors in two ways: (1) change the default
printing actions and (2) determine the code of an Informational Error so as to
take corrective action. To change the default printing action, the system vari-
able !Quiet is set to a nonzero value. To allow for corrective action to be taken
based on the existence of a particular Informational Error, function
CMAST_ERR_TRANS retrieves the integer code for an Informational Error
given a scalar string specifying the name given to the error.

In the program segment below, the Cholesky factorization of a matrix is to be
performed. If it is determined that the matrix is not nonnegative definite (and
often this is not immediately obvious), the program is to take a different branch.

x = CHNNDFAC, a, fac

; Call CHNNDFAC with a matrix that may not be nonnegative definite.

IF (CMAST_ERROR_TRANS($
’MATH_NOT_NONNNEG_DEFINITE’) EQ $
!Cmast_Err))$

; Check the system variable Cmast_Err to see if it contains the

; error code for the error MATH_NOT_NONNNEG_DEFINITE.

THEN ;... Handle matrix that is not nonnegative definite.

CMAST_ERR_STOP Function 591

CMAST_ERR_STOP Function
Sets options for error recovery in Math and Stat options.

Usage

CMAST_ERR_STOP, lev

Input Parameters

lev — Integer specifying the stopping level.

Discussion

Function CMAST_ERR_STOP allows users to define how the Math and Stat
options will behave when a Terminal or Fatal error occurs. Setting lev to one
will force the Math/Stat routine to stop execution when a Terminal or Fatal er-
ror occurs (default). Setting lev to zero will force the Math/Stat routine to con-
tinue execution when a Terminal or Fatal error occurs.

CMAST_ERR_PRINT Function
Sets options for error printing in Math and Stat options.

Usage

CMAST_ERR_PRINT, lev

Input Parameters

lev — Integer specifying the printing level.

Discussion

Function CMAST_ERR_PRINT allows users to define how the Math and Stat
options will behave when an error occurs. Setting lev to two will force the
Math/Stat routine to print all error messages that occur (default). Setting lev to
one will force the Math/Stat routine to print only Terminal and Fatal error mes-
sages that occur. Setting lev to zero will force the Math/Stat routine to not print
any error messages.

592 Chapter 13: Utilities PV-WAVE:IMSL Statistics Reference

Example

In this example, the function CSTRENDS is called with a data set that will gen-
erate a warning error. After the first call to CSTRENDS, a call is made to
CMAST_ERR_PRINT to shut off printing of all but Terminal and Fatal errors.

x = [9.5, 9.875, 9.25, 9.5, 9.375, 9.0, 8.75, 8.625, 8.0, $

 8.25, 8.25, 8.375, 8.125, 7.875, 7.5, 7.875, 7.875, $

 7.75,7.75, 7.75, 8.0, 7.5, 7.5, 7.125, 7.25, 7.25, 7.125,
$

 6.75,6.5, 7.0, 7.0, 6.75, 6.625, 6.625, 7.125, 7.75]

pstat = CSTRENDS(x)

% CSTRENDS: Warning: STAT_AT_LEAST_ONE_TIE

At least one tie is detected between the samples.

PM, pstat

 0.999996

 7.24792e-05

 1.00000

 3.81470e-06

 1.00000

 0.000244141

 1.00000

 0.000244141

; Call CMAST_ERR_PRINT to shut off printing of NOTE, ALERT and

; WARNING errors.

CMAST_ERR_PRINT, 1

Call CSTRENDS again. Note that the error message ids not print-
ed.

A-1

APPENDIX

A

References
Abramowitz, Milton, and Irene A. Stegun (editors) (1964), Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Stan-
dards, Washington, D.C.

Afifi, A.A., and S.P. Azen (1979), Statistical Analysis: A Computer Oriented Approach, 2d
ed., Academic Press, New York.

Ahrens, J.H., and U. Dieter (1974), Computer methods for sampling from gamma, beta,
Poisson, and binomial distributions, Computing, 12, 223–246.

Akaike, H. (1978), A Bayesian analysis of the minimum AIC procedure, Ann. Institute Stat-
ist. Mathematics., 30A, 9–14.

Akaike, H. (1973), Information theory and an extension of maximum likelihood principle,
Proc. 2nd International Symposium on Information Theory, Eds. B.N. Petrov and
F. Csaki, 267–281.

Akima, H. (1978), A method of bivariate interpolation and smooth surface fitting for irregu-
larly distributed data points, ACM Transactions on Mathematical Software, 4, 148–159.

Akima, H. (1970), A new method of interpolation and smooth curve fitting based on local
procedures, Journal of the ACM, 17, 589–602.

Anderson, R.L., and T.A. Bancroft (1952), Statistical Theory in Research, McGraw-Hill
Book Company, New York.

Anderson, T.W. (1971), The Statistical Analysis of Time Series, John Wiley & Sons, New
York.

Atkinson, A.C. (1979), A family of switching algorithms for the computer generation of
beta random variates, Biometrika, 66, 141–145.

Atkinson, A.C. (1985), Plots, Transformations, and Regression, Claredon Press, Oxford.
Atkinson, Ken (1978), An Introduction to Numerical Analysis, John Wiley & Sons, New

York.

A-2 Appendix A: References PV-WAVE:IMSL Statistics Reference

Barnett, A.R. (1981), An algorithm for regular and irregular Coulomb and Bessel functions
of real order to machine accuracy, Computer Physics Communication, 21, 297–314.

Barrett, J.C., and M.J.R. Healy (1978), A remark on Algorithm AS 6: Triangular decompo-
sition of a symmetric matrix, Applied Statistics, 27, 379–380.

Bays, Carter, and S.D. Durham (1976), Improving a poor random number generator, ACM
Transactions on Mathematical Software, 2, 59–64.

Bishop, Yvonne M.M., Stephen E. Fienberg, and Paul W. Holland (1975), Discrete Multi-
variate Analysis: Theory and Practice, MIT Press, Cambridge, Mass.

Blom, Gunnar (1958), Statistical Estimates and Transformed Beta-Variables, John Wiley &
Sons, New York.

de Boor, Carl (1978), A Practical Guide to Splines, Springer-Verlag, New York.
Bosten, Nancy E., and E.L. Battiste (1974), Incomplete beta ratio, Communications of the

ACM, 17, 156–157.
Box, George E.P., and Gwilyn M. Jenkins (1976), Time Series Analysis: Forecasting and

Control, revised ed., Holden-Day, Oakland.
Box, G.E.P., and P.W. Tidwell (1962), Transformation of the independent variables, Techno-

metrics, 4, 531–550.
Brent, Richard P. (1973), Algorithms for Minimization without Derivatives, Prentice-Hall,

Inc., Englewood Cliffs, New Jersey.
Brigham, E. Oran (1974), The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs,

New Jersey.
Brown, Morton B., and Jacqualine K. Benedetti (1977), Sampling behavior and tests for

correlation in two-way contingency tables, Journal of the American Statistical Associa-
tion, 42, 309–315.

Brown, Morton E. (1983), MCDP4F, two-way and multiway frequency tables—measures of
association and the log-linear model (complete and incomplete tables), in BMDP Statis-
tical Software, 1983 Printing with Additions, (edited by W.J. Dixon), University of
California Press, Berkeley.

Carlson, R.E., and T.A. Foley (1991),The parameter R2 in multiquadric interpolation, Com-
puter Mathematical Applications, 21, 29–42.

Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape parameters, Commu-
nications of the ACM, 21, 317–322.

Cohen, E. Richard, and Barry N. Taylor (1986), The 1986 Adjustment of the Fundamental
Physical Constants, Codata Bulletin, Pergamon Press, New York.

Conover, W.J. (1980), Practical Nonparametric Statistics, 2d ed., John Wiley & Sons, New
York.

Conover, W.J., and Ronald L. Iman (1983), Introduction to Modern Business Statistics, John
Wiley & Sons, New York.

Cook, R. Dennis, and Sanford Weisberg (1982), Residuals and Influence in Regression,
Chapman and Hall, New York.

 A-3

Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine computation of com-
plex Fourier series, Mathematics of Computation, 19, 297–301.

Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution integrals,
Applied Statistics, 17, 190–192.

Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with spline functions,
Numerische Mathematik, 31, 377–403.

D’Agostino, Ralph B., and Michael A. Stevens (1986), Goodness-of-Fit Techniques, Marcel
Dekker, New York.

Davis, Philip F., and Philip Rabinowitz (1984), Methods of Numerical Integration, Aca-
demic Press, Orlando, Florida.

Dallal, Gerald E. and Leland Wilkinson (1986), An analytic approximation to the distribu-
tion of Lilliefor’s test statistic for normality, The American Statistician, 40, 294–296.

Dennis, J.E., Jr., and Robert B. Schnabel (1983), Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Devore, Jay L (1982), Probability and Statistics for Engineering and Sciences, Brooks/Cole
Publishing Company, Monterey, Calif.

Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart (1979), LINPACK User’s Guide,
SIAM, Philadelphia.

Draper, N.R., and H. Smith (1981), Applied Regression Analysis, 2d ed., John Wiley &
Sons, New York.

Efroymson, M.A. (1960), Multiple regression analysis, Mathematical Methods for Digital
Computers, Volume 1, (edited by A. Ralston and H. Wilf), John Wiley & Sons, New
York, 191–203.

Emmett, W.G. (1949), Factor analysis by Lawless method of maximum likelihood, British
Journal of Psychology, Statistical Section, 2, 90–97.

Enright, W.H., and J.D. Pryce (1987), Two FORTRAN packages for assessing initial value
methods, ACM Transactions on Mathematical Software, 13, 1–22.

Farebrother, R.W., and G. Berry (1974), A remark on Algorithm AS 6: Triangular decompo-
sition of a symmetric matrix, Applied Statistics, 23, 477.

Fisher, R.A. (1936), The use of multiple measurements in taxonomic problems, The Annals
of Eugenics, 7, 179–188.

Fishman, George S., and Louis R. Moore (1982), A statistical evaluation of multiplicative
congruential random number generators with modulus 231 – 1, Journal of the American
Statistical Association, 77, 129–136.

Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting data with a
digital computer, SIAM Journal on Applied Mathematics, 5, 74–88.

Franke, R. (1982), Scattered data interpolation: Tests of some methods, Mathematics of
Computation, 38, 181–200.

Furnival, G.M. and R.W. Wilson, Jr. (1974), Regressions by leaps and bounds, Technomet-
rics, 16, 499–511.

A-4 Appendix A: References PV-WAVE:IMSL Statistics Reference

Gautschi, Walter (1968), Construction of Gauss-Christoffel quadrature formulas, Mathemat-
ics of Computation, 22, 251–270.

Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice-Hall, Englewood Cliffs, New Jersey.

Gentleman, W. Morven (1974), Basic procedures for large, sparse or weighted linear least
squares problems, Applied Statistics, 23, 448–454.

Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright (1985), Model building and practi-
cal aspects of nonlinear programming, Computational Mathematical Programming,
(edited by K. Schittkowski), NATO ASI Series, 15, Springer-Verlag, Berlin, Germany.

Girschick, M.A. (1939), On the sampling theory of roots of determinantal equations, Annals
of Mathematical Statistics, 10, 203–224.

Goldfarb, D., and A. Idnani (1983), A numerically stable dual method for solving strictly
convex quadratic programs, Mathematical Programming, 27, 1–33.

Golub, G.H. (1973), Some modified matrix eigenvalue problems, SIAM Review, 15, 318–
334.

Golub, Gene H., and Charles F. Van Loan (1983), Matrix Computations, Johns Hopkins
University Press, Baltimore, Md.

Golub, G.H., and C.F. Van Loan (1989), Matrix Computations, 2d ed., The Johns Hopkins
University Press, Baltimore, Maryland.

Golub, G.H., and J.H. Welsch (1969), Calculation of Gaussian quadrature rules, Mathemat-
ics of Computation, 23, 221–230.

Goodnight, James H. (1979), A tutorial on the SWEEP operator, The American Statistician,
33, 149–158.

Gregory, Robert, and David Karney (1969), A Collection of Matrices for Testing Computa-
tional Algorithms, Wiley-Interscience, John Wiley & Sons, New York.

Griffin, R., and K.A. Redish (1970), Remark on Algorithm 347: An efficient algorithm for
sorting with minimal storage, Communications of the ACM, 13, 54.

Grosse, Eric (1980), Tensor spline approximation, Linear Algebra and its Applications, 34,
29–41.

Haldane, J.B.S. (1939), The mean and variance of χ2 when used as a test of homogeneity,
when expectations are small, Biometrika, 31, 346.

Hardy, R.L. (1971), Multiquadric equations of topography and other irregular surfaces,
Journal of Geophysical Research, 76, 1905–1915.

Harman, Harry H. (1976), Modern Factor Analysis, 3d ed. revised, University of Chicago
Press, Chicago.

Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K. Mesztenyi,
John R. Rice, Henry G. Thacher, Jr., and Christoph Witzgall (1968), Computer Approxi-
mations, John Wiley & Sons, New York.

Hartigan, John A. (1975), Clustering Algorithms, John Wiley & Sons, New York.
Hartigan, J.A., and M.A. Wong (1979), Algorithm AS 136: A K-means clustering algorithm,

Applied Statistics, 28, 100–108.

 A-5

Hayter, Anthony J. (1984), A proof of the conjecture that the Tukey-Kramer multiple com-
parisons procedure is conservative, Annals of Statistics, 12, 61–75.

Healy, M.J.R. (1968), Algorithm AS 6: Triangular decomposition of a symmetric matrix,
Applied Statistics, 17, 195–197.

Hemmerle, William J. (1967), Statistical Computations on a Digital Computer, Blaisdell
Publishing Company, Waltham, Mass.

Hildebrand, F.B. (1956), Introduction to Numerical Analysis, McGraw Hill.
Hindmarsh, A.C. (1974), GEAR: Ordinary Differential Equation System Solver, Lawrence

Livermore National Laboratory Report UCID-30001, Revision 3, Lawrence Livermore
National Laboratory, Livermore, California.

Hinkley, David (1977), On quick choice of power transformation, Applied Statistics, 26, 67–
69.

Hill, G.W. (1970), Student’s t-distribution, Communications of the ACM, 13, 617–619.
Hoaglin, David C., and Roy E. Welsch (1978), The hat matrix in regression and ANOVA,

The American Statistician, 32, 17–22.
Hocking, R.R. (1972), Criteria for selection of a subset regression: Which one should be

used?, Technometrics, 14, 967–970.
Huber, Peter J. (1981), Robust Statistics, John Wiley & Sons, New York.
Hull, T.E., W.H. Enright, and K.R. Jackson (1976), User’s Guide for DVERK–A Subroutine

for Solving Nonstiff ODEs, Department of Computer Science Technical Report 100,
University of Toronto.

Irvine, Larry D., Samuel P. Marin, and Philip W. Smith (1986), Constrained interpolation
and smoothing, Constructive Approximation, 2, 129–151.

Jackson, K.R., W.H. Enright, and T.E. Hull (1978), A theoretical criterion for comparing
Runge-Kutta formulas, SIAM Journal of Numerical Analysis, 15, 618 – 641.

Jenkins, M.A. (1975), Algorithm 493: Zeros of a real polynomial, ACM Transactions on
Mathematical Software, 1, 178–189.

Jenkins, M.A., and J.F. Traub (1970), A three-stage algorithm for real polynomials using
quadratic iteration, SIAM Journal on Numerical Analysis, 7, 545–566.

John, Peter W.M. (1971), Statistical Design and Analysis of Experiments, Macmillan Com-
pany, New York.

Jöhnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten Zufalls-zahlen,
Metrika, 8, 5–15.

Jöreskog, K.G. (1977), Factor analysis by least squares and maximum-likelihood methods,
Statistical Methods for Digital Computers, (edited by Kurt Enslein, Anthony Ralston,
and Herbert S. Wilf), John Wiley & Sons, New York, 125–153.

Kaiser, H.F. (1963), Image analysis, Problems in Measuring Change, (edited by C. Harris),
University of Wisconsin Press, Madison, Wis.

Kaiser, H.F., and J. Caffrey (1965), Alpha factor analysis, Psychometrika, 30, 1–14.
Kendall, Maurice G., and Alan Stuart (1973), The Advanced Theory of Statistics, Volume 2:

Inference and Relationship, 3rd ed., Charles Griffin & Company, London.

A-6 Appendix A: References PV-WAVE:IMSL Statistics Reference

Kendall, Maurice G., and Alan Stuart (1979), The Advanced Theory of Statistics,
Volume 2: Inference and Relationship, 4th ed., Oxford University Press, New York.

Kendall, Maurice G., Alan Stuart, and J. Keith Ord (1983), The Advanced Theory of Statis-
tics, Volume 3: Design and Analysis, and Time Series, 4th. ed., Oxford University Press,
New York.

Kennedy, William J., Jr. and James E. Gentle (1980), Statistical Computing, Marcel Dek-
ker, New York.

Kinnucan, P., and H. Kuki (1968), A Single Precision Inverse Error Function Subroutine,
Computation Center, University of Chicago.

Kirk, Roger E. (1982), Experimental Design: Procedures for the Behavioral Sciences, 2d
ed., Brooks/Cole Publishing Company, Monterey, Calif.

Knuth, Donald E. (1981), The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, 2d ed., Addison-Wesley, Reading, Mass.

Lawley, D.N., and A.E. Maxwell (1971), Factor Analysis as a Statistical Method, 2d ed.,
Butterworth, London.

Learmonth, G.P., and P.A.W. Lewis (1973), Naval Postgraduate School Random Number
Generator Package LLRANDOM, NPS55LW73061A, Naval Postgraduate School,
Monterey, Calif.

Leavenworth, B. (1960), Algorithm 25: Real zeros of an arbitrary function, Communications
of the ACM, 3, 602.

Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based on Ranks, Holden-Day,
San Francisco.

Levenberg, K. (1944), A method for the solution of certain problems in least squares, Quar-
terly of Applied Mathematics, 2, 164–168.

Lewis, P.A.W., A.S. Goodman, and J.M. Miller (1969), A pseudorandom number generator
for the System/360, IBM Systems Journal, 8, 136–146.

Liepman, David S. (1964), Mathematical constants, Handbook of Mathematical Functions,
Dover Publications, New York.

Lilliefors, H.W. (1967), On the Kolmogorov-Smirnov test for normality with mean and vari-
ance unknown, Journal of the American Statistical Association, 62, 534–544.

Longley, James W. (1967), An appraisal of least-squares programs for the electronic com-
puter from the point of view of the user, Journal of the American Statistical
Association, 62, 819–841.

Maindonald, J.H. (1984), Statistical Computation, John Wiley & Sons, New York.
Mardia, K.V., J.T. Kent, J.M. Bibby (1979), Multivariate Analysis, Academic Press, New

York.
Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear parameters,

SIAM Journal on Applied Mathematics, 11, 431–441.
Martin, R.S., and J.H. Wilkinson (1971), The Modified LR algorithm for complex Hessen-

berg matrices, Volume II: Linear Algebra Handbook, Springer, New York.

 A-7

Micchelli, C.A. (1986), Interpolation of scattered data: Distance matrices and conditionally
positive definite functions, Constructive Approximation, 2, 11–22.

Micchelli, C.A., T.J. Rivlin, and S. Winograd (1976), The optimal recovery of smooth func-
tions, Numerische Mathematik, 26, 279–285.

Micchelli, C.A., Philip W. Smith, John Swetits, and Joseph D. Ward (1985), Constrained Lp
approximation, Constructive Approximation, 1, 93–102.

Müller, D.E. (1956), A method for solving algebraic equations using an automatic computer,
Mathematical Tables and Aids to Computation, 10, 208–215.

Milliken, George A., and Dallas E. Johnson (1984), Analysis of Messy Data, Volume 1:
Designed Experiments, Van Nostrand Reinhold, New York.

Miller, Rupert G., Jr. (1980), Simultaneous Statistical Inference, 2d ed., Springer-Verlag,
New York.

Moré, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User Guide for MINPACK-1,
Argonne National Laboratory Report ANL 80–74, Argonne, Illinois.

Murtagh, Bruce A. (1981), Advanced Linear Programming: Computation and Practice,
McGraw-Hill, New York.

Murty, Katta G. (1983), Linear Programming, John Wiley and Sons, New York.
Nelson, Peter (1989), Multiple Comparisons of Means Using Simultaneous Confidence

Intervals, Journal of Quality Technology, 21, 232–241.
Neter, John, and William Wasserman (1974), Applied Linear Statistical Models, Richard D.

Irwin, Homewood, Ill.
Neter, John, William Wasserman, and Michael H. Kutner (1983), Applied Linear Regres-

sion Models, Richard D. Irwin, Homewood, Illinois.
Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing Company,

Reading, Massachusetts.
Owen, D.B. (1965), A special case of the bivariate non-central t distribution, Biometrika,

52, 437–446.
Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice-Hall, Inc., Englewood

Cliffs, New Jersey.
Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting with mini-

mal storage, Communications of the ACM, 13, 624.
Piessens, R., E. deDoncker-Kapenga, C.W. Überhuber, and D.K. Kahaner (1983), QUAD-

PACK, Springer-Verlag, New York.
Powell, M.J.D. (1978), A fast algorithm for nonlinearly constrained optimization calcula-

tions, in Numerical Analysis Proceedings, Dundee 1977, Lecture Notes in Mathematics,
(edited by G. A. Watson), 630, Springer-Verlag, Berlin, Germany, 144–157.

Powell, M.J.D. (1985), On the quadratic programming algorithm of Goldfarb and Idnani,
Mathematical Programming Study, 25, 46–61.

Powell, M.J.D. (1983), ZQPCVX a FORTRAN subroutine for convex quadratic program-
ming, DAMTP Report 1983/NA17, University of Cambridge, Cambridge, England.

A-8 Appendix A: References PV-WAVE:IMSL Statistics Reference

Reinsch, Christian H. (1967), Smoothing by spline functions, Numerische Mathematik, 10,
177–183.

Rice, J.R. (1983), Numerical Methods, Software, and Analysis, Mcguire-Hill, New York.
Rietman, Edward (1989), Exploring the Geometry of Nature, Windcrest Books, Blue Ridge

Summit, Pennsylvania.
Robinson, Enders A. (1967), Multichannel Time Series Analysis with Digital Computer Pro-

grams, Holden-Day, San Francisco.
Royston, J.P. (1982a), An extension of Shapiro and Wilk’s W test for normality to large

samples, Applied Statistics, 31, 115–124.
Royston, J.P. (1982b), The W test for normality, Applied Statistics, 31, 176–180.
Royston, J.P. (1982c), Expected normal order statistics (exact and approximate), Applied

Statistics, 31, 161–165.
Sallas, William M., and Abby M. Lionti (1988), Some useful computing formulas for the

nonfull rank linear model with linear equality restrictions, IMSL Technical Report
8805, IMSL, Houston.

Savage, I. Richard (1956), Contributions to the theory of rank order statistics–the two-sam-
ple case, Annals of Mathematical Statistics, 27, 590–615.

Schittkowski, K. (1980), Nonlinear programming codes, Lecture Notes in Economics and
Mathematical Systems, 183, Springer-Verlag, Berlin, Germany.

Schittkowski, K. (1983), On the convergence of a sequential quadratic programming method
with an augmented Lagrangian line search function, Mathematik Operations for Schung
and Statistik, Serie Optimization, 14, 197–216.

Schittkowski, K. (1986), NLPQL: A FORTRAN subroutine solving constrained nonlinear
programming problems, (edited by Clyde L. Monma), Annals of Operations Research,
5, 485–500.

Schmeiser, Bruce (1983), Recent advances in generating observations from discrete random
variates, Computer Science and Statistics: Proceedings of the Fifteenth Symposium on
the Interface, (edited by James E. Gentle), North-Holland Publishing Company, Amster-
dam, 154–160.

Schmeiser, Bruce W., and A.J.G. Babu (1980), Beta variate generation via exponential
majorizing functions, Operations Research, 28, 917–926.

Schmeiser, Bruce, and Voratas Kachitvichyanukul (1981), Poisson Random Variate Genera-
tion, Research Memorandum 81-4, School of Industrial Engineering, Purdue University,
West Lafayette, Ind.

Schmeiser, Bruce W., and Ram Lal (1980), Squeeze methods for generating gamma vari-
ates, Journal of the American Statistical Association, 75, 679–682.

Schwartz, G. (1978), Estimating the dimension of a model, Ann. Statist., 6, 461-464.
Searle, S.R. (1971), Linear Models, John Wiley & Sons, New York.
Shampine, L.F. (1975), Discrete least-squares polynomial fits, Communications of the ACM,

18, 179–180.

 A-9

Shampine, L.F., and C.W. Gear (1979), A user’s view of solving stiff ordinary differential
equations, SIAM Review, 21, 1–17.

Singleton, R.C. (1969), Algorithm 347: An efficient algorithm for sorting with minimal
storage, Communications of the ACM, 12, 185–187.

Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and C.B. Moler
(1976), Matrix Eigensystem Routines—EISPACK Guide, Springer-Verlag, New York.

Smith, P.W. (1990), On knots and nodes for spline interpolation, Algorithms for Approxima-
tion II, J.C. Mason and M.G. Cox, Eds., Chapman and Hall, New York.

Snedecor, George W., and William G. Cochran (1967), Statistical Methods, 6th ed., Iowa
State University Press, Ames, Iowa.

Spurrier, John D., and Steven P. Isham (1985), Exact simultaneous confidence intervals for
pairwise comparisons of three normal means, Journal of the American Statistical Asso-
ciation, 80, 438–442.

Stewart, G.W. (1973), Introduction to Matrix Computations, Academic Press, New York.
Stoer, J. (1985), Principles of sequential quadratic programming methods for solving nonlin-

ear programs, Computational Mathematical Programming, (edited by K. Schittkowski),
NATO ASI Series, 15, Springer-Verlag, Berlin, Germany.

Stoline, Michael R. (1981), The status of multiple comparisons: simultaneous estimation of
all pairwise comparisons in one-way ANOVA designs, The American Statistician, 35,
134–141.

Strecok, Anthony J. (1968), On the calculation of the inverse of the error function, Mathe-
matics of Computation, 22, 144–158.

Stroud, A.H., and D.H. Secrest (1963), Gaussian Quadrature Formulae, Prentice-Hall,
Englewood Cliffs, New Jersey.

Temme, N.M. (1975), On the numerical evaluation of the modified Bessel function of the
third kind, Journal of Computational Physics, 19, 324–337.

Thompson, I.J., and A.R. Barnett (1987), Modified Bessel functions Iv(z) and Kv(z) of real
order and complex argument, to selected accuracy, Computer Physics Communication,
47, 245–257.

Tukey, John W. (1962), The future of data analysis, Annals of Mathematical Statistics, 33,
1–67.

Velleman, Paul F., and David C. Hoaglin (1981), Applications, Basics, and Computing of
Exploratory Data Analysis, Duxbury Press, Boston.

Watkins, David S., L. Elsner (1991), Convergence of algorithm of decomposition type for
the eigenvalue problem, Linear Algebra Applications, 143, 19–47.

Weisberg, S. (1985), Applied Linear Regression, 2nd edition, John Wiley & Sons, New
York.

A-10 Appendix A: References PV-WAVE:IMSL Statistics Reference

B-1

APPENDIX

B

Summary of Routines
ALLBEST Procedure page 100

Selects the best multiple linear regression models.

ANOVA1 Function page 212
Analyzes a one-way classification model.

ANOVABALANCED Function page 242
Balanced fixed, random, or mixed model

ANOVAFACT Function page 221
Analyzes a balanced factorial design with fixed effects.

ANOVANESTED Function page 231
Nested random mode

ARMA Function page 366
Computes method-of-moments or least-squares
estimates of parameters for a nonseasonal ARMA model.

AUTOCORRELATION Function page 391
Sample autocorrelation function

BETA Function page 581
Evaluate the complete beta function.

BETACDF Function page 495
Evaluates the beta probability distribution function.

BETAI Function page 583
Evaluate the real incomplete beta function.

B-2 Appendix B: Summary of Routines PV-WAVE:IMSL Statistics Reference

BINOMIALCDF Function page 497
Evaluates the binomial distribution function.

BINOMIALCOEF Function page 580
Evaluate the binomial coefficient.

BINOMIALPDF Function page 498
Evaluates the binomial probability function.

BINORMALCDF Function page 480
Evaluates the bivariate normal distribution function.

BOXCOXTRANS Function page 387
Perform a Box-Cox transformation

CAT_GLM Function page 280
Generalized linear models.

CHISQCDF Function page 482
Evaluates the chi-squared distribution function.
Using a keyword, the inverse of the chi-squared
distribution can be evaluated.

CHISQTEST Function page 334
Performs a chi-squared goodness-of-fit test.

CMAST_ERR_PRINT Procedure page 591
Sets options for error printing.

CMAST_ERR_STOP Procedure page 591
Sets options for error recovery.

CMAST_ERR_TRANS Function page 589
Determines if an Informational Error has occurred.

COCHRANQ Function page 324
Cochran’s Q test.

CONT_TABLE Procedure page 549
Sets up a table to generate pseudorandom numbers from a general continuous
distribution.

CONTINGENCY Function page 261
Performs a chi-squared analysis of a two-way
contingency table.

COVARIANCES Function page 190
Computes the sample variance-covariance or
correlation matrix.

 B-3

CSTRENDS Function page 310
Cox and Stuarts’ sign test for trends in location
and dispersion.

DIFFERENCE Function page 382
Differences a seasonal or nonseasonal time series.

DISCR_ANALYSIS Procedure page 437
Perform discriminant function analysis.

DISCR_TABLE Function page 553
Sets up a table to generate pseudorandom numbers from a general discrete
distribution.

EXACT_ENUM Function page 273
Exact probabilities in a table; total enumeration.

EXACT_NETWORK Function page 275
Exact probabilities in a table.

FACTOR_ANALYSIS Function page 428
Extracts initial factor-loading estimates in factor analysis.

FAURE_INIT Function page 564
Initializes the structure used for computing a shuffled Faure sequence.

FAURE_NEXT_PT Function page 567
Generates a shuffled Faure sequence.

FCDF Function page 487
Evaluates the F distribution function. Using a keyword,
the inverse of the F distribution function can be evaluated.

FREQTABLE Function page 36
Tallies observations into a one-way frequency table.

FRIEDMANS_TEST Function page 319
Friedman’s test.

GAMMA_ADV Function page 585
Evaluate the real gamma function.

GAMMACDF Function page 492
Evaluates the gamma distribution function.

GAMMAI Function page 587
Evaluate the incomplete gamma function.

GARCH Function page 401
Compute estimates of the parameters of a GARCH(p,q)

B-4 Appendix B: Summary of Routines PV-WAVE:IMSL Statistics Reference

model

HYPERGEOCDF Function page 500
Evaluates the hypergeometric distribution function.

HYPOTH_PARTIAL Function page 141
Constructs an equivalent completely testable multivariate
general linear hypothesis HβU = G from a partially testable
hypothesis HpβU = Gp.

HYPOTH_SCPH Function page 147
Computes the matrix of sums of squares and crossproducts
for the multivariate general linear hypothesis HβU = G
given the regression fit.

HYPOTH_TEST Function page 151
Performs tests for a multivariate general linear
hypothesis HβU = G given the hypothesis sums of
squares and crossproducts matrix SH.

K_MEANS Function page 419
Performs a K-means (centroid) cluster analysis.

KALMAN Procedure page 406
Performs Kalman filtering and evaluates the likelihood function for the state-space
model.

KOLMOGOROV1 Function page 342
One-sample continuos data Kolmogorov-Smirnov.

KOLMOGOROV2 Function page 345
Two-sample continuos data Kolmogorov-Smirnov.

KTRENDS Function page 326
K-sample trends test.

KW_TEST Function page 317
Kruskal-Wallis test.

LACK_OF_FIT Function page 398
Lack-of-fit test based on the corrleation function

LNBETA Function page 584
Evaluate the log of the real beta function.

LNGAMMA Function page 588
Evaluate the logarithm of the absolute value of
the gamma function.

LNORMREGRESS Function page 169

 B-5

Fits a multiple linear regression model using criteria
other than least squares. Namely, LNORMREGRESS
allows the user to choose Least Absolute Value (L1),
Least Lp norm (Lp), or Least Maximum Value
(Minimax or L∞) method of multiple linear regression.

MACHINE Function page 573
Returns information describing the computer’s arithmetic.

MULTICOMP Function page 230
Performs Student-Newman-Keuls multiple-comparisons test.

MULTIPREDICT Function page 93
Computes predicted values, confidence intervals, and
diagnostics after fitting a regression model.

MULTIREGRESS Function page 77
Fits a multiple linear regression model using least squares
and optionally compute summary statistics for the
 regression model.

MVAR_NORMALITY Function page 347
Mardia’s test for multivariate normality.

NCTRENDS Function page 308
Noehter’s test for cyclical trend.

NONLINOPT Function page 160
Fits data to a nonlinear model (possibly with linear
constraints) using the successive quadratic programming
 algorithm (applied to the sum of squared errors,
sse = ∑(yi − f(xi; θ))2) and either a finite difference
gradient or a user-supplied gradient.

NONLINREGRESS Function page 132
Fits a nonlinear regression model.

NORM1SAMP Function page 25
Computes statistics for mean and variance inferences
using a sample from a normal population.

NORM2SAMP Function page 29
Computes statistics for mean and variance inferences
using samples from two independently normal populations.

NORMALCDF Function page 478
Evaluates the standard normal (Gaussian) distribution
 function. Using a keyword, the inverse of the standard
normal (Gaussian) distribution can be evaluated.

B-6 Appendix B: Summary of Routines PV-WAVE:IMSL Statistics Reference

NORMALITY Function page 339
Performs a test for normality.

PARTIAL_AC Function page 395
Sample partial autocorrelation function

PARTIAL_COV Function page 194
Partial correlations and covariances.

POISSONCDF Function page 502
Evaluates the Poisson distribution function.

POLYPREDICT Function page 125
Computes predicted values, confidence intervals, and
diagnostics after fitting a polynomial regression model.

POLYREGRESS Function page 118
Performs a polynomial least-squares regression.

POOLED_COV Function page 199
Pooled covariance matrix.

PRINC_COMP Function page 423
Computes principal components.

RAND_GEN_CONT Function page 551
Generates pseudorandom numbers from a general continuous distribution.

RAND_GEN_DISCR Function page 557
Generates pseudorandom numbers from a general discrete distribution using an
alias method or optionally a table lookup method.

RANDOM Function page 518
Generates pseudorandom numbers. The default distribution
is a uniform (0, 1) distribution, but many different
distributions can be specified through the use of
keywords.

RANDOM_ARMA Function page 560
Generate pseudorandom ARMA process numbers

RANDOM_FROM_DATA Function page 547
Generates pseudorandom numbers from a multivariate distribution determined from
a given sample.

RANDOM_NPP Function page 537
Generates pseudorandom numbers from a nonhomogeneous Poisson process.

RANDOM_ORDER Function page 540
Generates pseudorandom order statistics from a standard normal distribution.

 B-7

RANDOM_ORTH_MAT Function page 543
Generates a pseudorandom orthogonal matrix or a correlation matrix

RANDOM_SAMPLE Function page 545
Generates a simple pseudorandom sample from a finite population

RANDOM_TABLE Function page 553
Sets or retrieves the current table used in either the shuffled or GFSR random num-
ber generator

RANDOM_TABLE_TWOWAY Function page 542
Generates a pseudorandom two-way table.

RANDOMNESS_TEST Function page 352
Runs test, Paris-serial test, d2 test or triplets tests.

RANDOMOPT page 510
Uses keywords to set or retrieve the random
number seed or to select the uniform (0, 1)
multiplicative, congruential pseudorandom-number generator.

RANKS Function page 48
Computes the ranks, normal scores, or exponential
 scores for a vector of observations.

REGRESSORS Function page 70
Generates regressors for a general linear model.

ROBUST_COV Function page 202
Robust estimate of covariance matrix.

SIGNTEST Function page 296
Performs a sign test.

SIMPLESTAT Function page 19
Computes basic univariate statistics.

SORTDATA Function page 42
Sorts observations by specified keys, with option to
tally cases into a multiway frequency table.

STATDATA Function page 578
Retrieves commonly analyzed data sets.

STEPWISE Procedure page 109
Builds multiple linear regression models using forward,
backward, or stepwise selection.

SURVIVAL_GLM Function page 450
Analyzes survival data using a generalized linear model

B-8 Appendix B: Summary of Routines PV-WAVE:IMSL Statistics Reference

and estimates using various parametric modes.

TCDF Function page 489
Evaluates the Student’s t distribution function.

TIE_STATS Function page 315
Tie statistics.

WILCOXON Function page 300
Performs a Wilcoxon rank sum test.

Index - A 1

Index

A
alpha-factor analysis method 434
analysis of variance 211

factorial design 221
general linear model 70
n-way design 221
one-way design 214

ANOVA, see analysis of variance
ANSI/IEEE 754-1985 575
ARMA

least-squares procedure 366, 367
method-of-moments procedure 367
stationary 384

association, measures of 267
asymptotic variances 425
autoregressive parameters 370

B
backcasting 367
backward difference operator 383
backward glance 114
backward selection 109
balanced experimental design 242
basic uniform generator 507
beta distribution 524, 535
beta functions 581, 583, 584
binomial coefficient 580
binomial distribution 525
binomial distributions 505, 506, 542, 543,

545, 547, 553, 557
binomial probability 296
Blom normal scores 50
Bonferroni method 216

C
cauchy distribution 526
characteristic roots 424
characteristic vectors 424
chi-square distribution 526
chi-squared

analysis 261
goodness-of-fit test 334, 336
measures relating to 264
statistic 264
test 26, 31, 261

chi-squared statistics 259
chi-squared test 334
classification model, one-way 212
classification variables 70
cluster analysis 417, 419
Cochran Q test 324
coefficient of variation 22
compiler 572, 591
confidence intervals 93, 125

Bonferroni method 213, 214, 216
Dunn-Sidák method 213, 214, 216
means 94
One-at-a-Time t (Fisher’s LSD) method

213, 214, 217
prediction 94
Scheffé method 94, 213, 214, 216
Tukey method 213, 214, 215
Tukey-Kramer method 213, 214, 215

constants
computer 573

contingency coefficient 262, 264, 353
contingency tables 273

two-way 261
continuous variables 70
Cook’s D statistics 94, 126

2 Index - D PV-WAVE:IMSL Statistics Reference

Cornish-Fisher expansion 490
correlation coefficient

multiple 80
correlation matrix 190, 543, 547
correlations 190, 194
counts 19, 42
covariances 190

sample 425
Cox and Stuart sign test 310
Cramer’s V 264
curvilinear regression 120

D
data sets, statistical 571

retrieving 578
degrees of freedom

for error 79, 112, 119
for the model 79, 112, 119
total corrected 79, 112, 119

DFFITS statistics 66, 94, 126
diagnostics 93, 125
discrete uniform distribution 530
distribution functions

beta probability 495
binomial distribution 497
binomial probability 498
chi-squared, noncentral 482
F distribution 487
gamma distribution 492
hypergeometric 500
normal

bivariate 480
Gaussian 478

inverse 478
inverse 478

Poisson 502
Student’s t 489

dummy variables 71
Dunn-Sidák method 216

E
eigensystem analysis 418
Erlang distribution 493
error handling

informational error codes 589
errors

alert xv
fatal xv
note xv
terminal xv
warning xv

excess, coefficient of 19, 22
exponential distribution 523
exponential mix distribution 527
exponential order statistics 51
exponential scores 48

F
F test statistic 31, 33
factor analysis 417, 418, 428
factorial design, balanced 221
factor-loading estimates 428
fatal errors xv
Faure 565, 568
Faure sequence 564, 567

faure_next_point 567
finite differences, forward 136
Fisher’s LSD 217
forecasts

GARCH 401
forward finite differences 136
forward selection 109
frequency tables

multiway 42
one-way 36

frequency tabulation 44
Friedmanís test 319
F-statistic 79

G
gamma distribution 524
gamma functions 585, 587, 588
gamma statistic 262
GARCH

(Generalized Autoregressive
Conditional Heteroskedastic)
401

general discrete distribution 498, 506,
540, 542, 545, 549, 551, 553, 557,
558

general distributions 334
general linear models 58, 70

Index - H 3

generalized feedback shift register method
507

generalized linear models 260
generators

basic uniform 507
random-number 17
shuffled 508

geometric distribution 527
GFSR 510
GFSR generator 508
GFSR method 507
Givens transformations 81
Goodman and Kruskal τ 268

for columns 262
for rows 262

goodness-of-fit tests 334
Gray code 566, 570
G-squared test 261

H
hypergeometric distribution 528

I
IEEE arithmetic 576
image analysis method 430, 433
indicator variables 71
inferences about the mean 32
Informational Error xiv
inverse

g3 85
generalized 84
Moore-Penrose 84

J
Jacobian matrix 133

K
Kalman filtering 406
Kappa analysis 259
kappa statistic 263, 269
Kendall’s τb 262
key sort 44
K-means analysis 419
Kolmogorov one-sample test 342

Kolmogorov two-sample test 345
Kruskal-Wallis test 263, 268
k-sample trends test 326
kurtosis 19, 22

L
lack-of-fit statistics 119
lack-of-fit tests 65
Least Absolute Value 69
Least Maximum Value 69
Least Squares

Alternatives
Least Absolute Value 69
Least Maximum Value 69
Lp Norm 69

least-squares fit 77, 242, 308, 310,
315, 319, 342, 345
weighted 87

least-squares method 432
generalized 430
unweighted 430
weighted 62

Lebesque measure 565, 568
Levenberg-Marquardt algorithm, modified

136
leverages 66, 94
library version 572, 591
Lilliefors test 339, 340
linear dependence 61
linear regression

multiple 56
simple 56

linear trend test 269
linearly dependent regressors 83
logarithmic distribution 528
lognormal distribution

random numbers
lognormal distribution 529

low-discrepancy 566, 569
Lp Norm 69

M
machine constants 571
MAD, see median absolute deviation 23
Mallows Cp criterion 101
Mann-Whitney U test 302

4 Index - N PV-WAVE:IMSL Statistics Reference

maximum 19, 22
maximum likelihood estimates 412
maximum likelihood method 430, 432
McNemar test 263, 269
mean 19, 22, 25, 79, 112, 119

exact 262, 353
for two normal populations 29
inferences about 32
lower confidence limit 19
normal population 25
return value 26
upper confidence limit 19

mean square
error 79, 112, 119
model 79, 112, 119

measures of
association 265
prediction 267
uncertainty 267

measures of association 259
median 23
median absolute deviation 23
method of provisional means 192
minimum 19, 22
missing values xiv, 69
models

general linear 70
multiple linear regression 77, 100
nonlinear regression 62, 132
polynomial 58
polynomial regression 125
regression 93

Moore-Penrose inverses 84
multiple linear regression models 56, 70, 77,

100, 109, 242, 308, 310, 315, 319, 342,
345

multiple-comparisons test
Student-Newman-Keuls 230

multiplicative congruential generator 507
multiplicative generator 507
multivariate analysis

cluster analysis 419
factor analysis 428
principal components 423

multivariate distribution 506, 547
multivariate normal distribution 521, 525, 536
multiway frequency table 42

N
NaN (Not a Number) xiv, 69
negative binomial 529
nested random model 211
Noether test 308
noncentral chi-squared distribution func-

tion 482
nonlinear regression models 62, 132
nonuniform generators 509
normal distribution 523
normal populations

mean 25
variances 25

normal scores 48
normality test 339
numerical ranking 48

O
observations, number of 19
One-at-a-Time t method 217
one-way classification model 212
one-way frequency table 36
operating system 572, 591
optimal prediction 263
overflow xiv

P
partial correlations 194
partial covariances 194
phi 262, 264, 353
Poisson distribution 523, 535
polynomial models 58
polynomial regression models 125
pooled variances 30
predicted values 93, 125, 135
prediction coefficient 267
principal components 417, 423
principal components method 430, 431
principal factor method 430, 431
probability distribution functons, see distri-

bution functions 477
product moment correlation 262
provisional means, method of 192
pseudorandom number generators 334

Index - R 5

pseudorandom numbers 505, 506, 537, 547,
549, 551, 553, 557, 558

pseudorandom order statistics 505, 540
pseudorandom orthogonal matrix 505, 543
pseudorandom sample 506, 545
p-values 79, 112, 119, 265

R
R matrix 61, 84, 135
R2 criterion 79, 100, 112, 119

adjusted 79, 100, 112, 119
random numbers 506

beta distribution 524, 535
binomial distribution 525
cauchy distribution 526
chi-squared distribution 526
control the seed 510
discrete uniform distribution 530
exponential distribution 523
exponential mix distribution 527
gamma distribution 524
generate pseudorandom numbers 518
geometric distribution 527
hypergeometric distribution 528
logarithmic distribution 528
multivariate normal distribution 521, 525,

536
negative binomial 529
normal distribution 523
Poisson distribution 523, 535
select the form 510
Student’s t distribution 530
triangular distribution 530
von Mises distribution 530
Weibull distribution 531

randomness test 352
range 19, 22
ranks 48
regression

all best 100
curvilinear 118
general linear model 70
multiple linear 77
nonlinear 132
polynomial least-squares 118
simple linear 56
stepwise 109

regression coefficients 79, 102, 113,
132

regression models 56, 93
regression simple linear 77
regressors 70
residuals 94, 126, 135

deleted 66, 94, 126
jackknife 66
standardized 66, 94, 126

S
sample covariance 425
Satterthwaite’s procedure 33
Savage scores 49
scaling results of RANDOM 535
Scheffé confidence intervals 94
Scheffé method 216
serial number 572, 591
Shapiro-Wilk W test 339, 340
shuffled generators 508
shuffling 510
sign test 296
skewness, coefficient of 19, 22
Snedecor’s F random variable 487
Somers’ D

for columns 262
for rows 262

sorting 42, 44
key 44

Spearman rank correlation 262
standard deviation 19, 26, 27, 31, 79,

112, 119
exact 262, 353

standard errors 265
standard errors, for characteristic roots

424
state vector 406
statespace model 406
stationary ARMA 384
stepwise selection 109
Stuart’s τc 262
Student’s t distribution 530
Student’s t distribution function 489
Student-Newman-Keuls multiple-compar-

isons test 230
sum of squares

for error 79, 112, 119
for the model 79, 112, 119

6 Index - T PV-WAVE:IMSL Statistics Reference

sequential 84, 119
total corrected 79, 112, 119

summary statistics 63, 77
sum-of-squares and crossproducts matrix 190
sums-of-squares

within-cluster 420
system variables

!Cmath_Err xiv
!Error xiv
!Quiet xiv

T
t test statistic 26, 30, 32
terminal errors xv
test for linear trend 269
test for normality 339
tests for randomness 334
tie statistics 315
time series

autoregressive parameters 366
backward differences 383
Box-Jenkins forecasts 374
difference 382
moving average parameters 366

transformations 68
triangular distribution 530
trust region 136
Tucker reliability coefficient 430
Tukey method 215
Tukey normal scores 51
Tukey-Kramer method 215

U
uncertainty

coefficients 262, 268
measures of 267

unit circle 520
univariate statistics 19, 280, 450

V
Van der Waerden normal scores 51
variable selection 57, 100, 109
variables

classification 70
continuous 70

dummy 71
indicator 71

variance-covariance matrix 190, 521
variances 19, 22, 25, 190

asymptotic 425
for two normal populations 29
inferences about 33
inflation factor 80
lower confidence limit 20
normal population 25
upper confidence limit 20

variation, coefficient of 19, 22, 79, 112,
119

von Mises distribution 530

W
warning errors xv
Weibull distribution 531
weighted least-squares fit 62, 84, 87
Wilcoxon rank sum test 300
Wilson-Hilferty approximation 483

	PV-WAVE IMSL Statistics Reference
	Table of Contents
	Preface
	Finding the Appropriate Routine
	Documentation Organization
	Typographical Conventions
	Technical Support

	Introduction
	Starting PV-WAVE:IMSL Statistics
	Comparison of Matrices vs. Arrays
	Underflow and Overflow
	Missing Values
	User Errors

	Ch. 1 - Basic Statistics
	Contents of Chapter
	Introduction
	SIMPLESTAT Function
	NORM1SAMP Function
	NORM2SAMP Function
	FREQTABLE Function
	SORTDATA Function
	RANKS Function

	Ch. 2 - Regression
	Contents of Chapter
	Introduction
	REGRESSORS Function
	MULTIREGRESS Function
	MULTIPREDICT Function
	ALLBEST Procedure
	STEPWISE Procedure
	POLYREGRESS Function
	POLYPREDICT Function
	NONLINREGRESS Function
	HYPOTH_PARTIAL Function
	HYPOTH_SCPH Function
	HYPOTH_TEST Function
	NONLINOPT Function
	LNORMREGRESS Function

	Ch. 3 - Correlation and Covariance
	Contents of Chapter
	Introduction
	COVARIANCES Function
	PARTIAL_COV Function
	POOLED_COV Function
	ROBUST_COV Function

	Ch. 4 - Analysis of Variance
	Contents of Chapter
	Introduction
	ANOVA1 Function
	ANOVAFACT Function
	MULTICOMP Function
	ANOVANESTED Function
	ANOVABALANCED Function

	Ch. 5 - Categorical and Discrete Data Analysis
	Contents of Chapter
	Introduction
	CONTINGENCY Function
	EXACT_ENUM Function
	EXACT_NETWORK Function
	CAT_GLM Function

	Ch. 6 - Nonparametric Statistics
	Contents of Chapter
	Introduction
	SIGNTEST Function
	WILCOXON Function
	NCTRENDS Function
	CSTRENDS Function
	TIE_STATS Function
	KW_TEST Function
	FRIEDMANS_TEST Function
	COCHRANQ Function
	KTRENDS Function

	Ch. 7 - Goodness of Fit
	Contents of Chapter
	Introduction
	CHISQTEST Function
	NORMALITY Function
	KOLMOGOROV1 Function
	KOLMOGOROV2 Function
	MVAR_NORMALITY Function
	RANDOMNESS_TEST Function

	Ch. 8 - Time Series and Forecasting
	Contents of Chapter
	Introduction
	ARMA Function
	DIFFERENCE Function
	BOXCOXTRANS Function
	AUTOCORRELATION Function
	PARTIAL_AC Function
	LACK_OF_FIT Function
	GARCH Function
	KALMAN Procedure

	Ch. 9 - Multivariate Analysis
	Contents of Chapter
	Introduction
	K_MEANS Function
	PRINC_COMP Function
	FACTOR_ANALYSIS Function
	DISCR_ANALYSIS Procedure

	Ch. 10 - Survival Analysis
	Contents of Chapter
	Introduction
	SURVIVAL_GLM Function

	Ch. 11 - Probability Distribution Functions and Inverses
	Contents of Chapter
	NORMALCDF Function
	BINORMALCDF Function
	CHISQCDF Function
	FCDF Function
	TCDF Function
	GAMMACDF Function
	BETACDF Function
	BINOMIALCDF Function
	BINOMIALPDF Function
	HYPERGEOCDF Function
	POISSONCDF Function

	Ch. 12 - Random Number Generation
	Contents of Chapter
	Introduction
	RANDOMOPT Procedure
	RANDOM_TABLE Procedure
	RANDOM Function
	RANDOM_NPP Function
	RANDOM_ORDER Function
	RAND_TABLE_2WAY Function
	RAND_ORTH_MAT Function
	RANDOM_SAMPLE Function
	RAND_FROM_DATA Function
	CONT_TABLE Procedure
	RAND_GEN_CONT Function
	DISCR_TABLE Function
	RAND_GEN_DISCR Function
	RANDOM_ARMA Function
	FAURE_INIT Function
	FAURE_NEXT_PT Function

	Ch. 13 - Utilities
	Contents of Chapter
	MACHINE Function
	STATDATA Function
	BINOMIALCOEF Function
	BETA Function
	BETAI Function
	LNBETA Function
	GAMMA_ADV Function
	GAMMAI Function
	LNGAMMA Function
	CMAST_ERR_TRANS Function
	CMAST_ERR_STOP Function
	CMAST_ERR_PRINT Function

	Appdx A - References
	Appdx B - Summary of Routines
	Index

